
Online tracking: A 1-million-site measurement and analysis
Draft: July 11th, 2016

Steven Englehardt
Princeton University
ste@cs.princeton.edu

Arvind Narayanan
Princeton University

arvindn@cs.princeton.edu

Abstract

We present the largest and most detailed measurement
of online tracking conducted to date, based on a crawl
of the top 1 million websites. We make 15 types of mea-
surements on each site, including stateful (cookie-based)
and stateless (fingerprinting-based) tracking, the effect
of browser privacy tools, and the exchange of tracking
data between different sites (“cookie syncing”). Our
findings include multiple sophisticated fingerprinting
techniques never before measured in the wild.

This measurement is made possible by our web
privacy measurement tool, OpenWPM, which uses an
automated version of a full-fledged consumer browser.
It supports parallelism for speed and scale, automatic
recovery from failures of the underlying browser, and
comprehensive browser instrumentation. OpenWPM is
open-source1 and has already been used as the basis of
seven published studies on web privacy and security.

1 Introduction

Web privacy measurement — observing websites and
services to detect, characterize and quantify privacy-
impacting behaviors — has repeatedly forced companies
to improve their privacy practices due to public pressure,
press coverage, and regulatory action [5, 13]. On
the other hand, web privacy measurement presents
formidable engineering and methodological challenges.
In the absence of a generic tool, it has been largely
confined to a niche community of researchers.

We seek to transform web privacy measurement into
a widespread practice by creating a tool that is useful
not just to our colleagues but also to regulators, self-
regulators, the press, activists, and website operators,
who are often in the dark about third-party tracking on
their own domains. We also seek to lessen the burden

1https://github.com/citp/OpenWPM

of continual oversight of web tracking and privacy, by
developing a robust and modular platform for repeated
studies.

Our tool, OpenWPM (Section 3), solves three key
systems challenges faced by the web privacy mea-
surement community. It does so by building on the
strengths of past work, while avoiding the pitfalls made
apparent in by previous engineering efforts. (1) We
achieve scale through the parallelism and robustness
by utilizing isolated measurement processes similar to
FPDetective’s platform [2], while still supporting state-
ful measurements. We’re able to scale to 1 million sites,
without having to resort to a stripped-down browser [29]
(a limitation we explore in detail in Section 3.2). (2)
We provide comprehensive instrumentation by building
upon the rich browser extension instrumentation of
FourthParty [32], without requiring the researcher
to write their own automation code. (3) We reduce
duplication of work by providing a modular architecture
to enable code re-use between studies.

Solving these problems is hard because the web is not
designed for automation or instrumentation. Selenium,2

the main tool for automated browsing through a full-
fledged browser, is intended for developers to test their
own websites. As a result it performs poorly on websites
not controlled by the user and breaks frequently if used
for large-scale measurements. Browsers themselves
tend to suffer memory leaks over long sessions. In
addition, instrumenting the browser to collect a variety
of data for later analysis presents formidable challenges.
For full coverage, we’ve found it necessary to have
three separate measurement points: a network proxy, a
browser extension, and a disk state monitor. Further, we
must link data collected from these disparate points into
a uniform schema, duplicating much of the browser’s
own internal logic in parsing traffic.

OpenWPM is a mature open-source tool that has

2http://www.seleniumhq.org/

https://github.com/citp/OpenWPM
http://www.seleniumhq.org/

already been used to provide the measurements of
seven published studies since 2014 (Section 3.3). These
studies have already led to improvements and fixes to
privacy and security. These experiments performed
in these studies have crucially benefited from several
advanced features of OpenWPM such as the ability to
automatically log into websites using specified creden-
tials. Using these case studies, we show in detail how
OpenWPM’s capabilities enable quickly designing and
running an experiment (Section 3.2).

A large-scale view of web tracking and privacy.
Since June 2015 we have been conducting regular mea-
surements of online tracking, incrementally adding fea-
tures and fixing scale bottlenecks. The results we report
in this paper (Section 4) are all based on our January
2016 measurement of the top 1 million sites. In future
work, we will publish additional analyses of the evolu-
tion of tracking and privacy over time.

Our scale enables a variety of new insights. We
observe for the first time that online tracking has a
“long tail”, but we find a surprisingly quick drop-off
in the scale of individual trackers: trackers in the tail
are found on very few sites (Section 5.1). Using a
new metric for quantifying tracking (Section 5.2), we
find that the tracking-protection tool Ghostery (https:
//www.ghostery.com/) is effective, with some caveats
(Section 5.5). We quantify the impact of trackers and
third parties on HTTPS deployment (Section 5.3) and
show that cookie syncing is pervasive (Section 5.6).

Turning to browser fingerprinting, we revisit an
influential 2014 study on canvas fingerprinting [1] with
updated and improved methodology (Section 6.1). Next,
we report on several types of fingerprinting never before
measured at scale: font fingerprinting using canvas
(which is distinct from canvas fingerprinting; Section
6.2), and fingerprinting by abusing the WebRTC API
(Section 6.3), the AudioContext API (Section 6.4), and
the Battery Status API (6.5). Finally, we show that in
contrast to our results in Section 5.5, existing privacy
tools are not effective at detecting these newer and more
obscure fingerprinting techniques.

Overall, our results show cause for concern, but
also encouraging signs. In particular, several of our
results suggest that while online tracking presents few
barriers to entry, trackers in the tail of the distribution
are found on very few sites and are far less likely to
be encountered by the average user. Those at the head
of the distribution, on the other hand, are owned by
relatively few companies and are responsive to the
scrutiny resulting from privacy studies.

We envision a future where measurement provides
a key layer of oversight of online privacy. This will be
especially important given that perfectly anticipating
and preventing all possible privacy problems (whether

through blocking tools or careful engineering of web
APIs) has proved infeasible. To enable such oversight,
we plan to make all our data publicly available (Open-
WPM is already open-source). We expect that measure-
ment will be useful to developers of privacy tools, to reg-
ulators and policy makers, journalists, and many others.

2 Background and related work

Background: third-party online tracking. As users
browse and interact with websites, they are observed by
both “first parties,” which are the sites the user visits
directly, and “third parties” which are typically hidden
trackers such as ad networks embedded on most web
pages. Third parties can obtain users’ browsing histo-
ries through a combination of cookies and other tracking
technologies that allow them to uniquely identify users,
and the “referer” header that tells the third party which
first-party site the user is currently visiting. Other sen-
sitive information such as email addresses may also be
leaked to third parties via the referer header.

Web privacy measurement platforms. There are two
main ways to collect large-scale data for web privacy
measurement: crowd-sourcing and simulating users, i.e.,
running bots. Our focus is on the latter type, but there are
many similarities between the two types of studies.

The closest comparisons to OpenWPM are other
open web privacy measurement platforms, which we
now review. We consider a tool to be a platform if is
is publicly available and there is some generality to
the types of studies that can be performed using it. In
some cases, OpenWPM has directly built upon existing
platforms, which we make explicit note of.

FPDetective is the most similar platform to Open-
WPM. FPDetective uses a hybrid PhantomJS and
Chromium based automation infrastructure [2], with
both native browser code and a proxy for instrumenta-
tion. In the published study, the platform was used for the
detection and analysis of fingerprinters, and much of the
included instrumentation was built to support that. The
platform allows researchers to conduct additional exper-
iments by replacing a script which is executed with each
page visit, and the authors state the platform can be eas-
ily extended for non-fingerprinting studies.

OpenWPM differs in several ways from FPDetective:
(1) it supports both stateful and stateless measurements,
whereas FPDetective only supports stateless (2) it
includes generic instrumentation for both stateless and
stateful tracking, enabling a wider range of privacy
studies without additional changes to the infrastructure
(3) none of the included instrumentation requires native
browser code, making it easier to upgrade to new or dif-
ferent versions of the browser, and (4) OpenWPM uses

2

https://www.ghostery.com/
https://www.ghostery.com/

a high-level command-based architecture, which allows
purpose built commands to be re-used between studies.

Chameleon Crawler is a Chromium based crawler that
utilizes the Chameleon3 browser extension for detecting
browser fingerprinting. Chameleon Crawler uses similar
automation components, but supports a subset of Open-
WPM’s instrumentation.

FourthParty is a Firefox plug-in for instrumentation
and does not handle automation [32]. OpenWPM has
incorporated and expanded upon nearly all of Fourth-
Party’s instrumentation within its own extension (Section
3).

TrackingObserver is a Chrome extension that detects
tracking and exposes APIs for extending its functionality
such as measurement and blocking [46].

XRay is a platform for differential correlation: infer-
ring input-output relationships in any personalized web
service [26]. XRay handles the analysis phase of web
privacy measurement in a generic way, but not driving
the browser or instrumentation. This is precisely the
converse of OpenWPM, suggesting the exciting possi-
bility of using the two tools in concert to achieve an even
greater degree of generic automation.

AdFisher is a tool for running automated experiments
on personalized ad settings [8]. It contains a barebones
automation framework with similar components as ours
(Selenium, xvfb), but the key technology is a machine-
learning system for causality attribution. Again there is
the possibility of running OpenWPM’s automation and
instrumentation together with AdFisher’s analytic com-
ponent.

WebXray is a PhantomJS based tool for measuring
HTTP traffic [29]. It has been used to study third-party
inclusions on the top 1 million sites, but as we show in
Section 3.2, measurements with a stripped-down browser
have the potential to miss a large number of resource
loads.

Several research groups have built or deployed
crowd-sourcing platforms for web privacy measurement,
including $heriff and Bobble [34, 60]. Some challenges
here include providing value to users to incentivize
participation, participant privacy, etc.

Previous findings. Krishnarmurthy and Wills [23]
provide much of the early insight into web tracking,
showing the growth of the largest third-party organiza-
tions from 10% to 20-60% of top sites between 2005 and
2008. Roesner et al. provide a classification framework
for third-party domains, arguing “it is incorrect to bun-
dle together different classes of trackers”, such as cross-
site trackers and analytics trackers [47]. In the years fol-
lowing Krishnarmurthy’s measurements, studies show a
continual increase in third-party tracking and in the di-

3https://github.com/ghostwords/chameleon

versity of tracking techniques [1, 2, 4, 19, 32, 47]. More
recently, Libert studies third-party HTTP requests on the
top 1 million sites [29], providing view of tracking across
the web. In this study, Libert compiled a comprehensive
mapping of third-party domains to organizations, show-
ing that Google can track users across nearly 80% of sites
through its various third-party domains.

Web tracking has expanded from simple HTTP
cookies to include more persistent tracking techniques.
Soltani et al. first examined the use of flash cookies
to “respawn” or re-instantiate HTTP cookies [50], and
Ayenson et al. showed how sites were using cache
E-Tags and HTML5 localStorage for the same purpose
[6]. These discoveries led to media backlash [28, 35]
and legal settlements [9, 49] against the companies
participating in the practice. However, several follow up
studies by other research groups confirmed that, despite
a reduction in usage (particularly within the US), the
technique is still used for tracking [1, 33, 47].

Device fingerprinting is a persistent tracking tech-
nique which does not require a tracker to set any state in
the user’s browser. Instead, trackers attempt to identify
users by a combination of the device’s properties. Within
samples of over 100,000 browsers, 80-90% of desktop
and 81% of mobile devices have a unique fingerprint
[10, 25]. New fingerprinting techniques are continually
discovered [14, 36, 41], and are subsequently used to
track users on the web [1, 2, 39]. In Section 6.1 we
present several new fingerprinting techniques discovered
during our measurements.

Personalization measurement. Measurement of
tracking is closely related to measurement of personal-
ization, since the question of what data is collected leads
to the question of how that data is used. The primary
purpose of online tracking is behavioral advertising —
showing ads based on the user’s past activity. Datta et
al. highlight the incompleteness of Google’s Ad Settings
transparency page and provide several empirical exam-
ples of discriminatory and predatory ads [8]. Lécuyer et
al. develop XRay, a system for inferring which pieces of
user data are used for personalization [26]. Another sys-
tem by some of the same authors is Sunlight which im-
proves upon their previous methodology to provide sta-
tistical confidence of their targeting inferences [27].

Many other practices that raise privacy or ethical
concerns have been studied: price discrimination, where
a site shows different prices to different consumers
for the same product [18, 58]; steering, a gentler form
of price discrimination where a product search shows
differently-priced results for different users [31]; and
the filter bubble, the supposed effect that occurs when
online information systems personalize what is shown
to a user based on what the user viewed in the past [60].

Web security measurement. Web security studies of-

3

https://github.com/ghostwords/chameleon

ten use similar methods as web privacy measurement,
and the boundary is not always clear. Yue and Wang
modified the Firefox browser source code in order to per-
form a measurement of insecure Javascript implemen-
tations on the web [61] . Nikiforakis et al. utilized a
headless browser to measure the amount of third-party
Javascript inclusions across many popular sites and the
vulnerabilities that arise from how the script is embed-
ded [38]. Van Goethem et al. likewise used a headless
browser to measure the presence of security seals on the
top 1 million sites [57]. Zarras et al. used Selenium
to drive crawls that measured and categorized malicious
advertisements displayed while browsing popular sites
[62]. Rafique et al. also used a Selenium-based crawler
to measure the presence of malware and other vulnerabil-
ities on live streaming websites [44]. Other studies have
analyzed Flash and Javascript elements of webpages to
measure security vulnerabilities and error-prone imple-
mentations [40, 56].

3 Measurement Platform

An infrastructure for automated web privacy measure-
ment has three components: simulating users, recording
observations (response metadata, cookies, behavior of
scripts, etc.), and analysis. We set out to build a platform
that can automate the first two components and can
ease the researcher’s analysis task. We sought to make
OpenWPM general, modular, and scalable enough to
support essentially any privacy measurement.

3.1 Design and Implementation

We divided our browser automation and data collec-
tion infrastructure into three main modules: browser
managers which act as an abstraction layer for au-
tomating individual browser instances, a user-facing
task manager which serves to distribute commands to
browser managers, and a data aggregator, which acts
as an abstraction layer for browser instrumentation. The
researcher interacts with the task manager via an exten-
sible, high-level, domain-specific language for crawling
and controlling the browser instance. The entire platform
is built using Python and Python-compatible libraries.

Browser driver: Providing realism and support for
web technologies. We considered a variety of choices
to drive measurements, i.e., to instruct the browser to
visit a set of pages (and possibly to perform a set of ac-
tions on each). The two main categories to choose from
are lightweight browsers like PhantomJS (an implemen-
tation of WebKit), and full-fledged browsers like Firefox
and Chrome. We chose to use Selenium, a cross-platform
web driver for Firefox, Chrome, Internet Explorer, and

Task
Manager

Data
Aggregator

WWW

Selenium
Browser
Manager

Browser

...

Browser
Manager

Browser

Browser
Manager

Browser

Instrumentation Layer

Analysis
Scripts

Selenium

Selenium

Figure 1: High-level overview of OpenWPM
The task manager monitors browser managers, which convert high-
level commands into automated browser actions. The data aggregator
receives and pre-processes data from instrumentation.

PhantomJS. We currently use Selenium to drive Fire-
fox, but Selenium’s common interface into all browsers
makes it easy to support other browsers in the future.

By using a consumer browser, all technologies that a
typical user would have access to (e.g., HTML5 storage
options, Adobe Flash) are also supported by measure-
ment instances. The alternative, PhantomJS, does not
support WebGL, HTML5 Audio and Video, CSS 3-D,
and browser plugins (like Flash), making it impossible to
run measurements on the use of these technologies [43].
We study the completeness of OpenWPM in Section 3.2.

In retrospect this has proved to be a sound choice.
Without full support for new web technologies we would
not have been able to discover and measure the use of
the AudioContext API for device fingerprinting as
discussed in Section 6.4.

Finally the use of real browsers also allows us to test
the effects of consumer browser extensions. We support
running measurements with extensions such as Ghostery
and HTTPS Everywhere as well as enabling Firefox
privacy settings such third-party cookie blocking and
the new Tracking Protection feature. New extensions
can easily be supported with only a few extra lines of
code. See Section 5.3 and Section 5.5 for analyses of
measurements run with these browser settings.

Browser managers: Providing stability. During the
course of a long measurement, a variety of unpredictable
events such as page timeouts or browser crashes could
halt the measurement’s progress or cause data loss or
corruption. A key disadvantage of Selenium is that it fre-
quently hangs indefinitely due to its blocking API [48],
as it was designed to be a tool for webmasters to test their
own sites rather than an engine for large-scale measure-
ments. Browser managers provide an abstraction layer
around Selenium, isolating it from the rest of the compo-
nents.

Each browser manager instantiates a Selenium in-
stance with a specified configuration of user preferences,

4

such as blocking third-party cookies. It is responsible
for converting high-level platform commands (e.g.
visiting a site) into specific Selenium subroutines. It
encapsulates per-browser preferences and state, enabling
recovery from browser failures. To isolate failures, each
browser manager runs as a separate process.

We support launching measurement instances in a
“headless” container, enabling greater parallelization
due to lower memory consumption and deploying
measurements on remote machines. Full browsers
have no headless option as they are built for graphical
user interaction. To solve this problem, we use the
pyvirtualdisplay tool to interface with Xvfb, which
draws the graphical interface of the browser to a virtual
frame buffer. They retain the ability to easily generate
screenshots of rendered sites when necessary.

Task manager: Providing scalability and abstrac-
tion. The task manager provides a scriptable command-
line interface for controlling multiple browsers simulta-
neously. Commands can be distributed to browsers either
synchronized or first-come-first-serve. Each command is
launched in a per-browser command execution thread.

The command-execution thread handles errors in its
corresponding browser manager automatically. If the
browser manager crashes, times out, or exceeds memory
limits, the thread enters a crash recovery routine. In
this routine, the manager archives the current browser
profile, kills all current processes, and loads the archive
(which includes cookies and history) into a fresh browser
with the same configuration options.

Data Aggregator: Providing repeatability. To pro-
mote scientific rigor, the platform should enable re-
searchers to easily reproduce experiments. This can be
achieved by logging data in a standardized format, so re-
search groups can easily share scripts and data. To sup-
port logging in a standard schema, we use data aggre-
gation components to gather results from all instrumen-
tation components in a central and structured location.
The data aggregator receives data during the measure-
ment, manipulates it as necessary, and saves it on disk
keyed back to a specific page visit and browser. The ag-
gregator exists within its own process, and is accessed
through a socket interface which can easily be connected
to from any number of browser managers or instrumen-
tation processes.

We currently support two data aggregators: a struc-
tured SQLite aggregator for storing relational data and
a LevelDB aggregator for storing compressed web
content. The SQLite aggregator stores the majority
of the measurement data, including data from both
the proxy and the extension (described below). The
LevelDB aggregator is designed to store de-duplicated
web content, such as Javascript or HTML files. The
aggregator checks if a hash of the content is present

in the database, and if not compresses the content and
adds it to the database. The hash can be used as a key
to access the content during analysis and to link it with
data in the SQLite database (such as an HTTP response).

In comparison to client-server databases, local
databases do not require end-user setup of a database
server and enable researchers to easily share self-
contained files. However, the use of socket connections
in both aggregators simplify the process of migrating to
other server-based solutions such as MySQL or cloud
hosted databases as studies grow in scale.

Instrumentation: Supporting compatibility and
modularity. We provide the researcher with data access
at several points: (1) raw data on disk, (2) at the net-
work level with an HTTP proxy, and (3) at the Javascript
level with a Firefox extension. This provides nearly full
coverage of a browser’s interaction with the web and the
system. Each level of instrumentation keys data with the
top level site being visited and the current browser id,
making it possible to combine measurement data from
multiple instrumentation sources for each page visit.

Disk Access — We include instrumentation that
collects changes to Flash LSOs and the Firefox cookie
database after each page visit. This allows a researcher
to determine which sites and third parties are setting
Flash cookies, and to record access to cookies in the
absence of an HTTP proxy or Firefox extension.

HTTP Data — After examining several Python based
HTTP proxies, we chose to use Mitmproxy (https:
//mitmproxy.org/) to record all HTTP Request and
Response headers. We generate and load a certificate
into Firefox to capture HTTPS data alongside HTTP. Ad-
ditionally, we use the HTTP proxy to dump the content
of any Javascript file requested during a page visit.

Javascript files are detected by first checking if the
Content-Type header contains the string “javascript”,
and if not, by checking the file extension of the URL
path. Once a script is detected, it is decompressed
(if necessary) and hashed. The hash and content are
sent through a socket to the LevelDBAggregator for
de-duplication.

Javascript Access — We provide the researcher with a
Javascript interface to pages visited through a Firefox ex-
tension. Our extension builds on the work of Fourthparty
[32]. In particular, we utilize Fourthparty’s Javascript
instrumentation, which defines custom getters and
setters on the window.navigator and window.screen

interfaces4. We updated and extended this functionality
to record access to the prototypes of the Storage,
HTMLCanvasElement, CanvasRenderingContext2D,
RTCPeerConntection, AudioContext objects, as well
as the prototypes of several children of AudioNode. This

4In the latest public version of Fourthparty (May 2015), this
instrumentation is not functional due to API changes.

5

https://mitmproxy.org/
https://mitmproxy.org/

records the setting and getting of all object properties and
calls of all object methods for any object built from these
prototypes. Alongside this, we record the new property
values set, and the arguments to all method calls.

In addition to recording access to instrumented
objects, we record the URL of the script responsible
for the property or method access. To do so, we throw
an Error and parse the stack trace after each call or
property intercept. This method is successful for 99.9%
of Javascript files we encountered, and even works for
Javascript files which have been minified or obfuscated
with eval. A minor limitation is that the function calls
of a script which gets passed into the eval method of a
second script will have their URL labeled as the second
script. This method is adapted with minor modifications
from the Privacy Badger Firefox Extension5.

We also replace Fourthparty’s direct SQLite log-
ging with a socket-based solution logging to our
SQLite DataAggregator. This eliminates the need to
merge databases post-measurement and makes data
management significantly easier for multi-browser
measurements.

Workflow. As an example workflow, the researcher
issues a command to the task manager and specifies that
it should synchronously execute on all browser man-
agers. The task manager checks all of the command ex-
ecution threads and blocks until all browsers are avail-
able to execute a new command. Then it creates new
command execution threads for all browsers and sends
the command and command parameters over a pipe to
the browser manager process. The browser manager in-
terprets this command and runs the necessary Selenium
code to execute the command in the browser. If the com-
mand is a “Get” command, which causes the browser to
visit a new domain, the browser manager distributes the
browser id and top-level page being visited to all cur-
rent instrumentation. The instrumentation uses this in-
formation to properly key data for the new page visit.
Once the Selenium code returns, the browser manager
can send returned data (e.g. the parsed contents of a
page) to the SQLite aggregator. All instrumentation is
also simultaneously sending data to the respective aggre-
gators from separate threads or processes. Once the com-
mand is complete, the browser manager notifies the task
manager that it is ready for a new command.

3.2 Evaluation

We now evaluate OpenWPM’s stability, completeness,
performance, and generality. In Section 3.3 we look at
several studies which have used our platform to conduct
multiple large-scale experiments.

5https://github.com/EFForg/privacybadgerfirefox

Stability. We tested the stability of vanilla Selenium
without our infrastructure in a variety of settings. The
best average we were able to obtain was roughly 800
pages without a freeze or crash. Even in small-scale
studies, the lack of recovery led to loss or corruption of
measurement data. Using the isolation provided by our
browser manager and task manager, we recover from all
browser crashes and have observed no data corruption
during stateful measurements of 100,000 sites. During
the course of our stateless 1 million site measurement in
January 2016 (Section 5), we observe over 90 million re-
quests and nearly 300 million Javascript calls. A single
OpenWPM browser can visit around 3500 sites per day,
requiring no manual interaction during that time. This
represents a significant improvement over the 800 page
limit mentioned previously. The scale and speed of the
overall measurement depends on the hardware used and
the measurement configuration (See “Resource Usage”
below).

Completeness. OpenWPM reproduces a human
user’s web browsing experience since it uses a full-
fledged browser. However, researchers have often used
stripped-down browsers such as PhantomJS for studies,
trading off fidelity for speed and simplicity.

To test the importance of using a full-fledged browser,
we examined the differences between OpenWPM and
PhantomJS (version 2.1.1) on the top 100 Alexa sites.
We averaged our results over 6 measurements of each
site with each tool. Both tools were configured with a
time-out of 10 seconds and we excluded a small number
of sites that didn’t complete loading.

Unsurprisingly, PhantomJS does not load Flash,
HTML5 Video, or HTML5 Audio objects (which it does
not support); OpenWPM loads nearly 300 instances of
those across all sites. More interestingly, PhantomJS
loads about 30% fewer HTML files, and about 50%
fewer resources with plain text and stream content types.
Upon further examination, one major reason for this is
that many sites don’t serve ads to PhantomJS. This makes
tracking measurements using PhantomJS problematic.

We also tested PhantomJS with the user-agent string
spoofed to look like Firefox, so as to try to prevent
sites from treating PhantomJS differently. Here the
differences were less extreme, but still present (10%
fewer requests of html resources, 15% for plain text,
and 30% for stream). However, many sites (such as
dropbox.com) seem to break when PhantomJS presents
the incorrect user-agent string. This is because sites may
expect certain capabilities that PhantomJS does not have
or may attempt to access APIs using Firefox-specific
names. One site, weibo.com, redirected PhantomJS
(with either user-agent string) to an entirely different
landing page than OpenWPM. In conclusion, these
findings support our view that OpenWPM enables

6

https://github.com/EFForg/privacybadgerfirefox

Study Year Brow
ser

au
tom

ati
on

Stat
efu

l c
raw

ls

Pers
ist

en
t p

rofi
les

Fine
-gr

ain
ed

pro
files

Adv
an

ce
d plu

gin
su

pp
ort

Auto
mate

d log
in

Dete
ct

tra
ck

ing
co

ok
ies

M
on

ito
r sta

te
ch

an
ge

s

Jav
asc

rip
t I

ns
tru

men
tat

ion

Con
ten

t e
xtr

ac
tio

n

Persistent tracking mechanisms [1] 2014 • • • • • • •
FB Connect login permissions [45] 2014 • • ◦
Surveillance implications of web tracking [12] 2015 • • • •
HSTS and key pinning misconfigurations [20] 2015 • • • ◦ •
The Web Privacy Census [4] 2015 • • • •
Geographic Variations in Tracking [15] 2015 • •
Analysis of Malicious Web Shells [52] 2016 •
This study (Sections 5 & 6) 2016 • • • • • • • •

Table 1: Seven published studies from five separate research groups which utilize OpenWPM.
An unfilled circle indicates that the feature was useful but application-specific programming or manual effort was still required.

significantly more complete and realistic web measure-
ment and tracking measurement than do stripped-down
browsers like PhantomJS.

Resource usage. When using the headless config-
uration, we are able to run up to 10 stateful browser
instances on an Amazon EC2 “c4.2xlarge” virtual ma-
chine6. This virtual machine costs around $300 per
month using price estimates from May 2016. Due to
Firefox’s memory consumption, stateful parallel mea-
surements are memory-limited while stateless parallel
measurements are typically CPU-limited and can support
a higher number of instances. On the same machine we
can run 20 browser instances in parallel if the browser
state is cleared after each page load.

Generality. Table 1 highlights the generality of the
platform, where it is used to study both web privacy and
web security questions, ranging from the measurement
of the variation of tracking in different countries to the
analyzing the deployment of HSTS.

The platform minimizes code duplication both across
studies and across configurations of a specific study.
For example, the Javascript monitoring instrumentation
is about 340 lines of Javascript code. Each additional
API monitored takes only a single additional line of
code. The instrumentation necessary to measure canvas
fingerprinting (Section 6.1) is just three additional lines
of code, while the WebRTC measurement (Section 6.3)
is just a single line of code.

Similarly, the code to add support for new extensions
or privacy settings is relatively low: 7 lines of code were
required to support Ghostery, 8 lines of code to support
HTTPS Everywhere, and 7 lines of codes to control
Firefox’s cookie blocking policy.

Even measurements themselves require very little ad-

6https://aws.amazon.com/ec2/instance-types/

ditional code on top of the platform. Each configuration
listed in Table 2 requires between 70 and 108 lines of
code. By comparison, the core infrastructure code and
included instrumentation is over 4000 lines of code,
showing that the platform saves a significant amount of
engineering effort between studies.

3.3 Applications

Seven academic studies have been published in journals,
conferences, and workshops, utilizing OpenWPM to
perform a variety of web privacy and security mea-
surements. Table 1 summarizes the advanced features
of the platform each research group utilized in their
measurements.

In addition to browser automation and HTTP data
dumps, the platform has several advanced capabilities
used by both our own measurements and those in other
groups. Measurements can keep state, such as cookies
and localStorage, within each session via stateful mea-
surements, or persist this state across sessions with per-
sistent profiles. Persisting state across measurements has
been used to measure cookie respawning [1] and to pro-
vide seed profiles for larger measurements (Section 5).
In general, stateful measurements are useful to replicate
the cookie profile of a real user for tracking [4, 12] and
cookie syncing analysis [1] (Section 5.6). In addition to
recording state, the platform can detect tracking cookies.

The platform also provides programmatic control
over individual components of this state such as Flash
cookies through fine-grained profiles as well as plug-ins
via advanced plug-in support. Applications built on top
of the platform can monitor state changes on disk to
record access to Flash cookies and browser state. These
features are useful in studies which wish to simulate
the experience of users with Flash enabled [4, 15] or

7

https://aws.amazon.com/ec2/instance-types/

examine cookie respawning with Flash [1].
Beyond just monitoring and manipulating state, the

platform provides the ability to capture any Javascript
API call with the included Javascript instrumentation.
This is used to measure device fingerprinting (Section 6).

Finally, the platform also has a limited ability to
extract content from web pages through the content
extraction module, and a limited ability to automatically
log into websites using the Facebook Connect automated
login capability. Logging in with Facebook has been
used to study login permissions [45].

4 Methodology

We run measurements on the homepages of the top 1
million sites to provide a comprehensive view of web
tracking and web privacy. These measurements provide
updated metrics on the use of tracking and fingerprinting
technologies, allowing us to shine a light onto the
practices of third parties and trackers across a large
portion of the web. We also explore the effectiveness of
consumer privacy tools at giving users control over their
online privacy.

Measurement Configuration. We run our measure-
ments on a “c4.2xlarge” Amazon EC2 instance, which
currently allocates 8 vCPUs and 15 GiB of memory per
machine. With this configuration we are able to run 20
browser instances in parallel. All measurements col-
lect HTTP Requests and Responses, Javascript calls, and
Javascript files using the instrumentation detailed in Sec-
tion 3. Table 2 summarizes the measurement instance
configurations. The data used in this paper were col-
lected during January 2016.

All of our measurements use the Alexa top 1 million
site list (http://www.alexa.com), which ranks sites
based on their global popularity with Alexa Toolbar
users. Before each measurement, OpenWPM retrieves
an updated copy of the list. When a measurement
configuration calls for less than 1 million sites, we
simply truncate the list as necessary. For eash site, the
browser will visit the homepage and wait until the site
has finished loading or until the 90 second timeout is
reached. The browser does not interact with the site or
visit any other pages within the site. If there is a timeout
we kill the process and restart the browser for the next
page visit, as described in Section 3.1.

Stateful measurements. To obtain a complete picture
of tracking we must carry out stateful measurements in
addition to stateless ones. Stateful measurements do not
clear the browser’s profile between page visits, meaning
cookie and other browser storage persist from site to site.
For some measurements the difference is not material,
but for others, such as cookie syncing (Section 5.6), it is
essential.

Making stateful measurements is fundamentally at
odds with parallelism. But a serial measurement of
1,000,000 sites (or even 100,000 sites) would take
unacceptably long. So we make a compromise: we first
build a seed profile which visits the top 10,000 sites in a
serial fashion, and we save the resulting state.

To scale to a larger measurement, the seed profile
is loaded into multiple browser instances running in
parallel. With this approach, we can approximately
simulate visiting each website serially. For our 100,000
site stateless measurement, we used the “ID Detection
2” browser profile as a seed profile.

This method is not without limitations. For example
third parties which don’t appear in the top sites if the
seed profile will have different cookies set in each of the
parallel instances. If these parties are also involved in
cookie syncing, the partners that sync with them (and
appear in the seed profile) will each receive multiple
IDs for each one of their own. This presents a trade-off
between the size the seed profile and the number of
third parties missed by the profile. We find that a seed
profile which has visited the top 10,000 sites will have
communicated with 76% of all third-party domains
present on more than 5 of the top 100,000 sites.

Handling errors. In presenting our results we only
consider sites that loaded successfully. For example, for
the 1 Million site measurement, we present statistics for
917,261 sites. The majority of errors are due to the site
failing to return a response, primarily due to DNS lookup
failures. Other causes of errors are sites returning a non-
2XX HTTP status code on the landing page, such as a
404 (Not Found) or a 500 (Internal Server Error).

Detecting ID cookies. Detecting cookies that store
unique user identifiers is a key task that enables many of
the results that we report in Section 5. We build on the
methods used in previous studies [1, 12]. Browsers store
cookies in a structured key-value format, allowing sites
to provide both a name string and value string. Many
sites further structure the value string of a single cookie
to include a set of named parameters. We parse each
cookie value string assuming the format:

(name1=)value1|...|(nameN =)valueN

where | represents any character except a-zA-Z0-9_
-=. We determine a (cookie-name, parameter-name,
parameter-value) tuple to be an ID cookie if it meets
the following criteria: (1) the cookie has an ex-
piration date over 90 days in the future (2) 8 ≤
length(parameter-value) ≤100, (3) the parameter-value

remains the same throughout the measurement, (4) the
parameter-value is different between machines and has
a similarity less than 66% according to the Ratcliff-
Obershelp algorithm [7]. For the last step, we run two
synchronized measurements (see Table 2) on separate
machines and compare the resulting cookies, as in pre-

8

http://www.alexa.com
a-zA-Z0-9_-=
a-zA-Z0-9_-=

Configuration # Sites # Success Timeout % Flas
h Ena

ble
d

Stat
efu

l

Para
lle

l

HTTP Data

Jav
asc

rip
t F

ile
s

Jav
asc

rip
t C

all
s

Disk
Sca

ns

Time to Crawl
Default Stateless 1 Million 917,261 10.58% • • • • 14 days
Default Stateful 100,000 94,144 8.23% ◦ • • • • 3.5 days
Ghostery 55,000 50,023 5.31% • • • • 0.7 days
Block TP Cookies 55,000 53,688 12.41% • • • • 0.8 days
HTTPS Everywhere 55,000 53,705 14.77% • • • • 1 day
ID Detection 1* 10,000 9,707 6.81% • • • • • • 2.9 days
ID Detection 2* 10,000 9,702 6.73% • • • • • • 2.9 days

Table 2: Census measurement configurations.
An unfilled circle indicates that a seed profile of length 10,000 was loaded into each browser instance in a parallel measurement. “# Success”
indicates the number of sites that were reachable and returned a response. A Timeout is a request which fails to completely load in 90 seconds.
*Indicates that the measurements were run synchronously on different virtual machines.

vious studies.

What makes a tracker? Every third party is poten-
tially a tracker, but for many of our results we need a
more conservative definition. We use popular tracking-
protection lists for this purpose: EasyList, EasyPrivacy,
and a commercial privacy tool’s list. All three lists con-
sist of regular expressions and URL sub-strings which
are matched against resource loads to determine if a re-
quest should be blocked.

Note that we are not simply classifying domains as
trackers or non-trackers, but rather classify each instance
of a third party on a particular website as a tracking or
non-tracking context. We consider a domain to be in the
tracking context if a consumer privacy tool would have
blocked that resource. Resource loads which wouldn’t
have been blocked by these extensions are considered
non-tracking.

While there is agreement between the extensions
utilizing these lists, we emphasize that they are far from
perfect. They contain false positives and especially
false negatives. That is, they miss many trackers —
new ones in particular. Indeed, much of the impetus
for OpenWPM and our measurements comes from the
limitations of manually identifying trackers. Thus,
tracking-protection lists should be considered an under-
estimate of the set of trackers, just as considering all
third parties to be trackers is an overestimate.

Finally, for readers interested in further details or in
reproducing our work, we provide further methodolog-
ical details in the Appendix: what constitutes distinct
domains (C.1), how to detect the landing page of a
site using the data collected by OpenWPM (C.2), how
we detect cookie syncing (C.3), why obfuscation of
Javascript doesn’t affect our ability to detect finger-
printing (C.4), and a minor limitation of our method of
instrumenting JavaScript calls (C.5).

5 Results of our 1-million site census

5.1 The long but thin tail of online tracking

During our January 2016 measurement of the Top 1
million sites, our tool made over 90 million requests,
assembling the largest dataset on web tracking to our
knowledge.

Our large scale allows us to answer a rather basic
question: how many third parties are there? In short, a
lot: the total number of third parties present on at least
two first parties is over 81,000.

What is more surprising is that the prevalence of third
parties quickly drops off: only 123 of these 81,000 are
present on more than 1% of sites. This suggests that the
number of third parties that a regular user will encounter
on a daily basis is relatively small. The effect is accentu-
ated when we consider that different third parties may be
owned by the same entity. All of the top 5 third parties,
as well as 12 of the top 20, are Google-owned domains.
In fact, Google, Facebook, and Twitter are the only
third-party entities present on more than 10% of sites.

Further, if we use the definition of tracking based
on tracking-protection lists, as defined in Section 4,
then trackers are even less prevalent. This is clear
from Figure 2, which shows the prevalence of the top
third parties (a) in any context and (b) only in tracking
contexts. Note the absence or reduction of content-
delivery domains such as gstatic.com, fbcdn.net,
and googleusercontent.com.

These results might come as a bit of a surprise to
the reader jaded by endless reports of an explosion in
third-party tracking. Our data suggest that there is a
trend toward economic consolidation in the third-party
ecosystem, in line with both some press [30] and some
of the academic literature [16]. For the hundred or so
third parties that are prevalent on 1% or more of sites, we
might expect that they are large enough entities that their

9

gstatic.com
fbcdn.net
googleusercontent.com

behavior can be regulated by public-relations pressure
and the possibility of legal or enforcement actions.
Indeed, measurement research has repeatedly proved
capable of bringing about these outcomes [1, 6, 33].

go
og

le-
an

aly
tic

s.c
om

gs
ta
tic

.co
m

do
ub

lec
lic

k.
ne

t

go
og

le.
co

m

fo
nt
s.g

oo
gle

ap
is.

co
m

fa
ce

bo
ok

.co
m

fa
ce

bo
ok

.n
et

aja
x.g

oo
gle

ap
is.

co
m

go
og

les
yn

dic
at
ion

.co
m

fb
cd

n.
ne

t

tw
itt

er
.co

m

go
og

lea
ds

er
vic

es
.co

m

ad
nx

s.c
om

go
og

leu
se
rc
on

te
nt
.co

m

blu
ek

ai.
co

m

m
at
ht
ag

.co
m

yo
ut
ub

e.c
om

yt
im

g.
co

m

go
og

let
ag

m
an

ag
er
.co

m

ya
ho

o.
co

m

0
10
20
30
40
50
60
70

%
F
ir
st

-P
ar

ti
es Tracking Context

Non-Tracking Context

Figure 2: Top third parties on the top 1 million sites. Not all instances
of third parties are classified as tracking by our methodology, and in
fact the same third party can be classified differently depending on the
context. (Section 4).

5.2 Prominence: a metric to rank third
parties

In Section 5.1 we ranked third parties by the number
of first party sites they appear on. This simple count
is a good first approximation, but it has two related
drawbacks. A major third party that’s present on (say)
90 of the top 100 sites would have a low score if its
prevalence drops off outside the top 100 sites. A related
problem is that the rank can be sensitive to the number
of websites visited in the measurement. Thus different
studies may rank third parties differently.

We also lack a good way to compare third parties (and
especially trackers) over time, both individually and in
aggregate. Some studies have measured the total number
of cookies [4], but we argue that this is a misleading
metric, since cookies may not have anything to do with
tracking.

To avoid these problems, we propose a principled
metric. We start from a model of aggregate browsing
behavior. There is some research suggesting that the
website traffic follows a power law distribution, with
the frequency of visits to the Nth ranked website being
proportional to 1

N [3, 21]. The exact relationship is not
important to us; any formula for traffic can be plugged
into our prominence metric below.

Definition:.

Prominence(t)=Σedge(s,t)=1
1

rank(s)
where edge(s,t) indicates whether third party t is present
on site s. This simple formula measures the frequency
with which an “average” user browsing according to the
power-law model will encounter any given third party.

The most important property of prominence is
that it de-emphasizes obscure sites, and hence can
be adequately approximated by relatively small-scale

measurements, as shown in Figure 3. We propose that
prominence is the right metric for:
1. Comparing third parties and identifying the top third

parties. We present the list of top third parties by
prominence in Table 14 (in the Appendix). Promi-
nence ranking produces interesting differences com-
pared to ranking by a simple prevalence count. For
example, Content-Distribution Networks become less
prominent compared to other types of third parties.

2. Measuring the effect of tracking-protection tools, as
we do in Section 5.5.

3. Analyzing the evolution of the tracking ecosystem
over time and comparing between studies. The
robustness of the rank-prominence curve (Figure 3)
makes it ideally suited for these purposes.

0 200 400 600 800 1000

Rank of third-party

10−3

10−2

10−1

100

101

P
ro

m
in

en
ce

(l
o

g
)

1K-site measurement

50K-site measurement

1M-site measurement

Figure 3: Prominence of third party as a function of prominence rank.
We posit that the curve for the 1M-site measurement (which can be
adequately approximated by a 50k-site measurement) presents a useful
aggregate picture of tracking.

5.3 Third parties impede HTTPS adoption
Table 3 shows the number of first-party sites that support
HTTPS and the number that are HTTPS-only. Our
results reveal that HTTPS adoption remains rather low
despite well-publicized efforts [11]. Publishers have
claimed that a major roadblock to adoption is the need to
move all embedded third parties and trackers to HTTPS
to avoid mixed-content errors [54, 59].

Mixed-content errors occur when HTTP sub-resources
are loaded on a secure site. This poses a security prob-
lem, leading to browsers to block the resource load or
warn the user depending on the content loaded [37].
Passive mixed content, that is, non-executable resources
loaded over HTTP, cause the browser to display an
insecure warning to the user (Figure 4) but still load
the content. Active mixed content is a far more serious
security vulnerability and is blocked outright by modern
browsers; it is not reflected in our measurements.

Third-party support for HTTPS. To test the hypoth-
esis that third parties impede HTTPS adoption, we first
characterize the HTTPS support of each third party. If a
third party appears on at least 10 sites and is loaded over

10

Firefox 47

Chrome 47

HTTPS HTTP
HTTPS w\ Passive

Mixed Content

Figure 4: Secure connection UI for Firefox Nightly 47 and Chrome 47.
The UI portrays a site with mixed content as less secure than an HTTPS
site without mixed content; clicking on the lock icon in Firefox reveals
the text ”Connection is not secure” when mixed content is present.

55K Sites 1M Sites
HTTP Only 82.9% X
HTTPS Only 14.2% 8.6%
HTTPS Opt. 2.9% X

Table 3: First party HTTPS support on the top 55K and top 1M sites.
“HTTP Only” is defined as sites which fail to upgrade when HTTPS
Everywhere is enabled. ‘HTTPS Only” are sites which always redirect
to HTTPS. “HTTPS Optional” are sites which provide an option to
upgrade, but only do so when HTTPS Everywhere is enabled. We
carried out HTTPS-everywhere-enabled measurement for only 55,000
sites, hence the X’s.

HTTPS on all of them, we say that it is HTTPS-only. If
it is loaded over HTTPS on some but not all of the, we
say that it supports HTTPS. If it is loaded over HTTP on
all of them, we say that it is HTTP-only. If it appears on
less than 10 sites, we do not have enough confidence to
make a determination.

Table 4 summarizes the HTTPS support of third
party domains which appear on more than 5 sites. A
large number of third-party domains are HTTP-only
(54%). However, when we weight third parties by
prominence, only 5% are HTTP-only. In contrast,
94% of prominence-weighted third parties support both
HTTP and HTTPS. This statistic supports our thesis that
consolidation of the third-party ecosystem is a plus for
security and privacy.

Impact of third-parties. We find that a significant
fraction of HTTP-default sites (26%) embed resources
from third-parties which do not support HTTPS. These
sites would be unable to upgrade to HTTPS without
browsers displaying mixed content errors to their users,
the majority of which (92%) would contain active con-
tent which would be blocked.

Similarly, of the 78,000 first-party sites that are
HTTPS-only, 6,000 (7.75%) load with mixed passive
content warnings. However, only 11% of these warnings
(650) are caused by HTTP-only third parties, suggesting
that many domains may be able to mitigate these
warnings by ensuring all resources are being loaded
over HTTPS when available. We examined the causes
of mixed content on these sites, summarized in Table 5.
The majority are caused by third parties, rather than the
site’s own content, with a surprising 27% caused solely

HTTPS Support Percent
Prominence
weighted %

HTTP Only 54% 5%
HTTPS Only 5% 1%
Both 41% 94%

Table 4: Third party HTTPS support. “HTTP Only” is defined as
domains from which resources are only requested over HTTP across all
sites on our 1M site measurement. ‘HTTPS Only” are domains from
which resources are only requested over HTTPS. “Both” are domains
which have resources requested over both HTTP and HTTPS. Results
are limited to third parties embedded on at least 10 first-party sites.

Class
Top 1M

% FP
Top 50k
% FP

Own 25.4% 29.6%
Favicon 1.4% 2.9%
Tracking 12.2% 27.0%
CDN 1.4% 2.9%
Non-tracking 43.4% 29.6%
Multiple causes 16.2% 8.1%

Table 5: A breakdown of causes of passive mixed-content warnings on
the top 1M sites and on the top 50k sites. “Non-tracking” represents
third-party content not classified as a tracker or a CDN.

by trackers.

5.4 News sites have the most trackers
The level of tracking on different categories of websites
varies considerably — by almost an order of magnitude.
To measure variation across categories, we used Alexa’s
lists of top 500 sites in each of 16 categories. From each
list we sampled 100 sites (the lists contain some URLs
that are not home pages, and we excluded those before
sampling).

In Figure 5 we show the average number of third
parties loaded across 100 of the top sites in each Alexa
category. Third parties are classified as trackers if
they would have been blocked by one of the tracking
protection lists, as discussion in Section 4.

ne
ws art

s
sp
ort
s
ho
me
ga
me
s

sh
op
pin
g

av
er
ag
e

rec
rea
tio
n

reg
ion
al

kid
s a
nd
tee
ns

so
cie
ty

bu
sin
ess

co
mp
ut
ers
he
alt
h

sci
en
ce

ref
ere
nc
e
ad
ult

0

10

20

30

40

50
Tracker
Non-Tracker

Figure 5: Average number of third parties in each Alexa category.

Why is there so much variation? With the exception

11

gs
ta

tic
.c

om

fo
nts

.g
oog

le
ap

is.
co

m

aj
ax

.g
oog

le
ap

is.
co

m

go
og

le
.c

om

boot
st

ra
pcd

n.c
om

yt
im

g.
co

m

cl
ou

dflar
e.

co
m

yo
utu

be.
co

m

jq
uer

y.c
om

w
p.c

om

s3
.a

m
az

on
aw

s.c
om

go
og

le
use

rc
on

te
nt.c

om

bai
du.c

om

m
ap

s.g
oog

le
ap

is.
co

m

qq.c
om

bp.b
lo

gs
pot

.c
om

ak
am

ai
hd.n

et

cd
nin

st
ag

ra
m

.c
om

tw
im

g.
co

m

jw
pcd

n.c
om

0
5

10
15
20
25
30
35

%
F

ir
st

-P
ar

ti
es

Figure 6: Third-party trackers on the top 55k sites with Ghostery
enabled. The majority of the top third-party domains not blocked are
CDNs or provide embedded content (such as Google Maps).

of the adult category, the sites on the low end of the
spectrum are mostly sites which belong to government
organizations, universities, and non-profit entities. This
suggests that websites may be able to forgo advertising
and tracking due to the presence of funding sources
external to the web. Sites on the high end of the spectrum
are largely those which provide editorial content. Since
many of these sites provide articles for free, and lack an
external funding source, they are pressured to monetize
page views with significantly more advertising.

5.5 Does tracking protection work?

Users have two main ways to reduce their exposure
to tracking: the browser’s built in privacy features and
extensions such as Ghostery or uBlock Origin.

Contrary to previous work questioning the effective-
ness of Firefox’s third-party cookie blocking [12], we
do find the feature to be effective. Specifically, only 237
sites (0.4%) have any third-party cookies set during our
measurement set to block all third-party cookies (“Block
TP Cookies” in Table 2). Most of these are for benign
reasons, such as redirecting to the U.S. version of a non-
U.S. site. We did find exceptions, including 32 that con-
tained ID cookies. For example, there are six Australian
news sites that first redirect to news.com.au before
re-directing back to the initial domain, which seems to
be for tracking purposes. While this type of workaround
to third-party cookie blocking is not rampant, we suggest
that browser vendors should closely monitor it and make
changes to the blocking heuristic if necessary.

Another interesting finding is that when third-party
cookie blocking was enabled, the average number of
third parties per site dropped from 17.7 to 12.6. Our
working hypothesis for this drop is that deprived of
ID cookies, third parties curtail certain tracking-related
requests such as cookie syncing (which we examine in
Section 5.6).

We also tested Ghostery, and found that it is effective
at reducing the number of third parties and ID cookies

10−4 10−3 10−2 10−1 100

Prominence of Third-party (log)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
o

f
T

P
B

lo
ck

ed

Figure 7: Fraction of third parties blocked by Ghostery as a function
of the prominence of the third party. As defined earlier, a third party’s
prominence is the sum of the inverse ranks of the sites it appears on.

(Figure 6). The average number of third-party includes
went down from 17.7 to 3.3, of which just 0.3 had
third-party cookies (0.1 with IDs). We examined the
prominent third parties that are not blocked and found
almost all of these to be content-delivery networks like
cloudflare.com or widgets like maps.google.com,
which Ghostery does not try to block. So Ghostery
works well at achieving its stated objectives.

However, the tool is less effective for obscure trackers
(prominence < 0.1). We see a similar trend in the
detection of fingerprinting scripts (Section 6.6); less
prominent scripts are not blocked as frequently by block-
ing tools. This makes sense given that the block list is
manually compiled and the developers are less likely to
have encountered obscure trackers. It suggests that large-
scale measurement techniques like ours will be useful
for tool developers to minimize gaps in their coverage.

5.6 How common is cookie syncing?
Cookie syncing, a workaround to the Same-Origin Pol-
icy, allows different trackers to share user identifiers with
each other. Besides being hard to detect, cookie syncing
enables back-end server-to-server data merges hidden
from public view, which makes it a privacy concern.

Our ID cookie detection methodology (Section 4)
allows us to detect instances of cookie syncing. If
tracker A wants to share its ID for a user with tracker
B, it can do so in one of two ways: embedding the ID in
the request URL to tracker B, or in the referer URL. We
therefore look for instances of IDs in referer, request,
and response URLs, accounting for URL encoding and
other subtleties. We describe the full details of our
methodology in Appendix C.3, with an important caveat
that our methodology captures both intentional and
accidental ID sharing.

Most third parties are involved in cookie syncing.
We run our analysis on the top 100,000 site stateful mea-
surement. The most prolific cookie-syncing third party
is doubleclick.net — it shares 108 different cook-

12

cloudflare.com
maps.google.com

ies with 118 other third parties (this includes both events
where it is a referer and where it is a receiver).

More interestingly, we find that the vast majority of
top third parties sync cookies with at least one other
party: 45 of the top 50, 85 of the top 100, 157 of the
top 200, and 460 of the top 1,000. This adds further
evidence that cookie syncing is an underappreciated and
under-researched privacy concern.

We also find that third parties are highly connected by
synced cookies. Specifically, of the top 50 third parties
that are involved in cookie syncing, the probability that
a random pair will have at least one cookie in common
is 85%. The corresponding probability for the top 100 is
66%.

Implications of “promiscuous cookies” for surveil-
lance. From the Snowden leaks, we learnt that that NSA
“piggybacks” on advertising cookies for surveillance and
exploitation of targets [17, 51, 53]. How effective can
this technique be? We present one answer to this ques-
tion. We consider a threat model where a surveillance
agency has identified a target by a third-party cookie (for
example, via leakage of identifiers by first parties, as de-
scribed in [12, 22, 24]). The adversary uses this identi-
fier to coerce or compromise a third party into enabling
surveillance or targeted exploitation.

We find that some cookies get synced over and
over again to dozens of third parties; we call these
promiscuous cookies. It is not yet clear to us why
these cookies are synced repeatedly and shared widely.
This means that if the adversary has identified a user
by such a cookie, their ability to surveil or target
malware to that user will be especially good. The
most promiscuous cookie that we found belongs to the
domain adverticum.net; it is synced or leaked to 82
other parties which are collectively present on 752 of
the top 1,000 websites! In fact, each of the top 10 most
promiscuous cookies is shared with enough third parties
to cover 60% or more of the top 1,000 sites.

6 Fingerprinting: a 1-million site view

OpenWPM significantly reduces the engineering re-
quirement of measuring device fingerprinting, making
it easy to update old measurements and discover new
techniques. In this section, we demonstrate this through
several new fingerprinting measurements, two of which
have never been measured at scale before, to the best of
our knowledge. We show how the number of sites on
which font fingerprinting is used and the number of third
parties using canvas fingerprinting have both increased
by considerably in the past few years. We also show
how WebRTC’s ability to discover local IPs without user
permission or interaction is used almost exclusively to
track users. We analyze a new fingerprinting technique

utilizing AudioContext7 found during our investiga-
tions. Finally, we discuss the use of the Battery API by
two fingerprinting scripts.

Our fingerprinting measurement methodology uti-
lizes data collected by the Javascript instrumentation
described in Section 3.1. With this instrumentation, we
monitor access to all built-in interfaces and objects we
suspect may be used for fingerprinting. By monitoring
on the interface or object level, we are able to record
access to all method calls and property accesses for each
interface we thought might be useful for fingerprinting.
This allows us to build a detection criterion for each
fingerprinting technique after a detailed analysis of
example scripts.

Although our detection criteria currently have neg-
ligible low false positive rate, we recognize that this
may change as new web technologies and applications
emerge. However, instrumenting all properties and
methods of an API provides a complete picture of each
application’s use of the interface, allowing our criteria
to also be updated. More importantly, this allows us
to replace our detection criteria with machine learning,
which is an area of ongoing work (Section 7).

% of First-parties
Rank Interval Canvas Canvas Font WebRTC
[0,1K) 5.10% 2.50% 0.60%
[1K,10K) 3.91% 1.98% 0.42%
[10K,100K) 2.45% 0.86% 0.19%
[100K,1M) 1.31% 0.25% 0.06%

Table 6: Prevalence of fingerprinting scripts on different slices of the
top sites. More popular sites are more likely to have fingerprinting
scripts.

6.1 Canvas Fingerprinting

Privacy threat. The HTML Canvas allows web applica-
tion to draw graphics in real time, with functions to sup-
port drawing shapes, arcs, and text to a custom canvas
element. In 2012 Mowery and Schacham demonstrated
how the HTML Canvas could be used to fingerprint de-
vices [36]. Differences in font rendering, smoothing,
anti-aliasing, as well as other device features cause de-
vices to draw the image differently. This allows the re-
sulting pixels to be used as part of a device fingerprint.

Detection methodology. We build on a 2014 mea-
surement study by Acar et.al. [1]. Since that study,
the canvas API has received broader adoption for non-
fingerprinting purposes, so we make several changes
to reduce false positives. In our measurements we

7https://developer.mozilla.org/en-US/docs/Web/API/

AudioContext

13

https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext

record access to nearly all of properties and meth-
ods of the HTMLCanvasElement8 interface and of the
CanvasRenderingContext2D9 interface. We filter
scripts according to the following criteria:
1. The canvas element’s height and width properties

must not be set below 16 px.10

2. Text must be written to canvas with least two colors
or at least 10 distinct characters.

3. The script should not call the save, restore,
or addEventListener methods of the rendering
context.

4. The script extracts an image with toDataURL or with
a single call to getImageData that specifies an area
with a minimum size of 16px × 16px.
This heuristic is designed to filter out scripts which are

unlikely to have sufficient complexity or size to act as an
identifier. We manually verified the accuracy of our de-
tection methodology by inspecting the images drawn and
the source code. We found a mere 4 false positives out of
3493 scripts identified on a 1 million site measurement.
Each of the 4 is only present on a single first-party.

Results. We found canvas fingerprinting on 14,371
(1.6%) sites. The vast majority (98.2%) are from third-
party scripts. These scripts come from about 3,500 URLs
hosted on about 400 domains. Table 7 shows the top
5 domains which serve canvas fingerprinting scripts or-
dered by the number of first-parties they are present on.

Domain # First-parties
doubleverify.com 7806
lijit.com 2858
alicdn.com 904
audienceinsights.net 499
boo-box.com 303
407 others 2719
TOTAL 15089 (14371 unique)

Table 7: Canvas fingerprinting on the Alexa Top 1 Million sites. For
a more complete list of scripts, see Table 11 in the Appendix.

Comparing our results with a 2014 study [1], we find
three important trends. First, the most prominent track-
ers have by-and-large stopped using it, suggesting that
the public backlash following that study was effective.
Second, the overall number of domains employing it
has increased considerably, indicating that knowledge of
the technique has spread and that more obscure trackers
are less concerned about public perception. As the
technique evolves, the images used have increased in
variety and complexity, as we detail in Figure 11 in the

8https://developer.mozilla.org/en-US/docs/Web/API/

HTMLCanvasElement
9https://developer.mozilla.org/en-US/docs/Web/API/

CanvasRenderingContext2D
10The default canvas size is 300px × 150px.

Appendix. Third, the use has shifted from behavioral
tracking to fraud detection, in line with the ad industry’s
self-regulatory norm regarding acceptable uses of
fingerprinting.

6.2 Canvas Font Fingerprinting
Privacy threat. The browser’s font list is very useful for
device fingerprinting [10]. The ability to recover the list
of fonts through Javascript or Flash is known, and exist-
ing tools aim to protect the user against scripts that do
that [2, 39]. But can fonts be enumerated using the Can-
vas interface? The only public discussion of the tech-
nique seems to be a Tor Browser Bundle ticket from
201411. To the best of our knowledge, we are the first
to measure its usage in the wild.

Detection methodology. The
CanvasRenderingContext2D interface provides a
measureText method, which returns several metrics
pertaining to the text size (including its width) when
rendered with the current font settings of the rendering
context. Our criterion for detecting canvas font finger-
printing is: the script sets the font property to at least
50 distinct, valid values and also calls the measureText
method at least 50 times on the same text string. We
manually examined the source code of each script found
this way and verified that there are zero false positives
on our 1 million site measurement.

Results. We found canvas-based font fingerprinting
present on 3,250 first-party sites. This represents less
than 1% of sites, but as Table 6 shows, the technique is
more heavily used on the top sites, reaching 2.5% of the
top 1000. The vast majority of cases (90%) are served
by a single third party, mathtag.com. The number of
sites with font fingerprinting represents a seven-fold in-
crease over a 2013 study [2], although they did not con-
sider Canvas.

6.3 WebRTC-based fingerprinting
Privacy threat. WebRTC is a framework for peer-to-
peer Real Time Communication in the browser, and ac-
cessible via Javascript. To discover the best network path
between peers, each peer collects all available candidate
addresses, including addresses from the local network in-
terfaces (such as ethernet or WiFi) and addresses from
the public side of the NAT and makes them available to
the web application without explicit permission from the
user. This has led to serious privacy concerns: users be-
hind a proxy or VPN can have their ISP’s public IP ad-
dress exposed [55]. We focus on a slightly different pri-
vacy concern: users behind a NAT can have their local IP

11https://trac.torproject.org/projects/tor/ticket/

13400

14

doubleverify.com
lijit.com
alicdn.com
audienceinsights.net
boo-box.com
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
mathtag.com
https://trac.torproject.org/projects/tor/ticket/13400
https://trac.torproject.org/projects/tor/ticket/13400

address revealed, which can be used as an identifier for
tracking. A detailed description of the discovery process
is given in Appendix B.

Detection methodology. To detect WebRTC local
IP discovery, we instrument the RTCPeerConnection12

interface prototype and record access to its method
calls and property access. After the measurement
is complete, we select the scripts which call the
createDataChannel and createOffer APIs, and ac-
cess the event handler onicecandidate13. We manu-
ally verified that scripts that call these functions are in
fact retrieving candidate IP addresses, with zero false
positives on 1 million sites. Next, we manually tested if
such scripts are using these IPs for tracking. Specifically,
we check if the code is located in a script that contains
other known fingerprinting techniques, in which case we
label it tracking. On the other hand, if we manually as-
sess that the code has a clear non-tracking use, we label
it non-tracking. If neither of these is the case, we la-
bel the script as ‘unknown’. We emphasize that even the
non-tracking scripts present the abovementioned privacy
concern related to leakage of private IPs.

Results. We found WebRTC being used to discover
local IP addresses without user interaction on 715 sites
out of the top 1 million. The vast majority of these (659)
were done by third-party scripts, loaded from 99 differ-
ent locations. A large majority (625) were used for track-
ing. The top 10 scripts accounted for 83% of usage, in
line with our other observations about the small number
of third parties responsible for most tracking. We provide
a list of scripts in Appendix Table 13.

The number of confirmed non-tracking uses of unso-
licited IP candidate discovery is small, and based on our
analysis, none of them is critical to the application. We
therefore suggest that WebRTC IP discovery should be
private by default, in contrast to the recommendation of
a Working Group that recently reviewed the security and
privacy concerns [55].

Classification # Scripts # First-parties
Tracking 57 625 (88.7%)
Non-Tracking 10 40 (5.7%)
Unknown 32 40 (5.7%)

Table 8: Summary of WebRTC local IP discovery on the top
1 million Alexa sites.

12https://developer.mozilla.org/en-US/docs/Web/API/

RTCPeerConnection
13Although we found it unnecessary for current scripts, instrument-

ing localDescription will cover all possible IP address retrievals.

Oscillator GainAnalyser Destination

FFT

[-121.36, -121.19, ...]SHA1() eb8a30ad7...

=0

Oscillator
Dynamics

Compressor Destination

Triangle Wave

Sine Wave

Buffer

MD5() ad60be2e8...[33.234, 34.568, ...]

Figure 8: AudioContext node configuration used to generate a
fingerprint. Top: Used by www.cdn-net.com/cc.js in an
AudioContext. Bottom: Used by client.a.pxi.pub/*/

main.min.js and js.ad-score.com/score.min.js in an
OfflineAudioContext. Full details in Appendix D.

6.4 AudioContext Fingerprinting

The scale of our data gives us a new way to systemat-
ically identify new types of fingerprinting not previously
reported in the literature. The key insight is that finger-
printing techniques typically aren’t used in isolation but
rather in conjunction with each other. So we monitor
known tracking scripts and look for unusual behavior
(e.g., use of new APIs) in a semi-automated fashion.

Using this approach we found several fingerprinting
scripts utilizing AudioContext and related inter-
faces. A manual analysis of these scripts suggest
that trackers are attempting to utilize the Audio API
to fingerprint users in multiple ways. Their use
ranges from simply checking for the API’s existence
to deriving a fingerprint from the underlying audio
processing. We provide a live demonstration page to
compute and visualize a device’s audio fingerprint at:
https://webtap.princeton.edu/audio-fp.

In the simplest case, a script from the company Liv-
erail14 checks for the existence of an AudioContext and
OscillatorNode to add a single bit of information to
a broader fingerprint. More sophisticated scripts process
an audio signal generated with an OscillatorNode to
fingerprint the device. This technique appears concep-
tually similar to that of canvas fingerprinting. Audio
signals processed on different machines or browsers
may have slight differences due to hardware or software
differences between the machines, while the same
combination of machine and browser will produce the
same output.

Figure 8 shows two alternate audio fingerprinting

14https://www.liverail.com/

15

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
www.cdn-net.com/cc.js
client.a.pxi.pub/*/main.min.js
client.a.pxi.pub/*/main.min.js
js.ad-score.com/score.min.js
https://webtap.princeton.edu/audio-fp
https://www.liverail.com/

700 750 800 850 900 950 1000 1050

−220

−200

−180

−160

−140

−120

−100

−80
dB

Frequency Bin Number

Chrome Linux 47.0.2526.106
Firefox Linux 41.0.2
Firefox Linux 44.0b2

Figure 9: Visualization of processed OscillatorNode output from
the fingerprinting script https://www.cdn-net.com/cc.js for
three different browsers on the same machine. We found these values
to remain constant for each browser after several checks.

configurations found in three scripts. Both configura-
tions process an audio signal from an OscillatorNode,
before reading the resulting signal and hashing it to
create a device audio fingerprint. Full details of the
configurations are given in Appendix D.

We tested the output of the scripts on a small sample
of machines, and confirmed the values returned are
largely stable on the same machine and different for
different machines. We did observe a couple examples
of instability for the top technique of Figure 8, and
several examples of collisions for machines with similar
hardware for the bottom technique of Figure 8. We leave
a full evaluation of the effectiveness of the technique to
future work. See Figure 9 for a visualization of the tail
end of the processed FFT from several browsers.

Using a follow-up measurement of the Alexa top
1 million sites from March 2016, we find that this
technique is very infrequently used. The Liverail scripts
are present on just 512 sites, and the remaining scripts
are present on even less. The cdn-net.com scripts are
included on 49 sites, however the audio fingerprinting
section appears to be disabled. The pxi.pub and
ad-score.com scripts are present and actively finger-
printing users on 12 and 6 sites respectively. This shows
that, even with very low usage rates, we can successfully
bootstrap off of currently known fingerprinting scripts to
discover and measure new techniques.

6.5 Battery API Fingerprinting

As a second example of bootstrapping, we analyze
the Battery Status API15, which allows a site to query
the browser for the current battery level or charging
status of a host device. It was previously identified as
a potential fingerprinting vector [41]. We discovered

15https://www.w3.org/TR/2016/PR-battery-status-

20160329/

two fingerprinting scripts utilizing the API during our
manual analysis of other fingerprinting techniques.

One script, https://go.lynxbroker.de/eat_

heartbeat.js, retrieves the current charge level
of the host device and combines it with several
other identifying features. These features include
the canvas fingerprint and the user’s local IP ad-
dress retrieved with WebRTC as described in
Section 6.1 and Section 6.3. The second script,
http://js.ad-score.com/score.min.js, queries
all properties of the BatteryManager interface, retriev-
ing the current charging status, the charge level, and the
time remaining to discharge or recharge. As with the
previous script, these features are combined with other
identifying features used to fingerprint a device.

6.6 The wild west of fingerprinting scripts
In Section 5.5 we found the various tracking protection
measures to be very effective at reducing third-party
tracking. In Table 9 we show how blocking tools miss
many of the scripts we detected throughout Section 6,
particularly those using lesser-known techniques. Al-
though blocking tools detect the majority of instances
of well-known techniques, only a fraction of the total
number of scripts are detected.

Ghostery EasyList + EasyPrivacy
Technique % Scripts % Sites % Scripts % Sites

Canvas 8.4% 80.5% 25.1% 88.3%
Canvas Font 10.3% 90.6% 10.3% 90.6%
WebRTC 1.9% 1.0% 4.8% 5.6%
Audio 11.1% 53.1% 5.6% 1.6%

Table 9: Percentage of fingerprinting scripts blocked by Ghostery
or the combination of EasyList and EasyPrivacy for all techniques
described in Section 6. Included is the percentage of sites with
fingerprinting scripts on which scripts are blocked.

Fingerprinting scripts pose a unique challenge for
manually curated block lists. They don’t typically
change the rendering of a page and may not be included
by an advertising entity. The script content may be
obfuscated to the point where manual inspection is
difficult and the purpose of the script unclear.

OpenWPM’s active instrumentation (see Section 3.1)
detects a large number of scripts not blocked by the
current privacy tools. Ghostery and a combination of
EasyList and EasyPrivacy both perform similarly in their
block rate. The privacy tools block canvas fingerprinting
on over 80% of sites, and block canvas font fingerprint-
ing on over 90%. However, only a fraction of the total
number of scripts utilizing the techniques are blocked
(between 8% and 25%) showing that less popular third
parties are missed. Lesser-known techniques, like

16

https://www.cdn-net.com/cc.js
cdn-net.com
pxi.pub
ad-score.com
https://www.w3.org/TR/2016/PR-battery-status-20160329/
https://www.w3.org/TR/2016/PR-battery-status-20160329/
https://go.lynxbroker.de/eat_heartbeat.js
https://go.lynxbroker.de/eat_heartbeat.js
http://js.ad-score.com/score.min.js

WebRTC IP discovery and Audio fingerprinting have
even lower rates of detection.

10−6 10−5 10−4 10−3 10−2

Prominence of Script (log)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
o

f
S

cr
ip

ts
B

lo
ck

ed

Figure 10: Fraction of fingerprinting scripts with prominence above a
given level blocked by Ghostery, EasyList, or EasyPrivacy.

In fact, fingerprinting scripts with a low prominence
are blocked much less frequently than those with high
prominence. Figure 10 shows the fraction of scripts
which are blocked by Ghostery, EasyList, or Easypri-
vacy for all techniques analyzed in this section. All
scripts with a prominence above 0.0125 are detected and
blocked by one of the blocking tools, while only 38% of
those with a prominence above 0.0001 are. The long tail
of fingerprinting scripts are largely unblocked by current
privacy tools.

7 Conclusion and future work

Web privacy measurement has the potential to play a
key role in keeping online privacy incursions and power
imbalances in check. To achieve this potential, measure-
ment tools must be made available broadly rather than
just within the research community. In this work, we’ve
tried to bring this ambitious goal closer to reality.

The analysis presented in this paper represents a snap-
shot of results from ongoing, monthly measurements.
OpenWPM and census measurements are the first two
stages of a multi-year project. We are currently working
on two directions that build on the work presented here.
The first is the use of machine learning to automatically
detect and classify trackers. If successful, this will
greatly improve the effectiveness of browser privacy
tools. Today such tools use tracking-protection lists that
need to be created manually and laboriously, and suffer
from significant false positives as well as false negatives.
Our large-scale data provide the ideal source of ground
truth for training classifiers to detect and categorize
trackers.

The second line of work is a web-based analysis
platform that makes it easy for a minimally technically
skilled analyst to investigate online tracking based on
the data we make available. In particular, we are aiming
to make it possible for an analyst to save their analysis

scripts and results to the server, share it, and for others
to build on it.

8 Acknowledgements

We would like to thank Shivam Agarwal for contributing
analysis code used in this study, Christian Eubank and
Peter Zimmerman for their work on early versions of
OpenWPM, and Gunes Acar for his contributions to
OpenWPM and helpful discussions during our investiga-
tions, and Dillon Reisman for his technical contributions.

We’re grateful to numerous researchers for useful
feedback: Joseph Bonneau, Edward Felten, Steven
Goldfeder, Harry Kalodner, and Matthew Salganik at
Princeton, Fernando Diaz and many others at Microsoft
Research, Franziska Roesner at UW, Marc Juarez at KU
Leuven, Nikolaos Laoutaris at Telefonia Research, Vin-
cent Toubiana at CNIL, France, Lukasz Olejnik at IN-
RIA, France, Tanvi Vyas at Mozilla, Chameleon devel-
oper Alexei Miagkov, Joel Reidenberg at Fordham, An-
drea Matwyshyn at Northeastern, and the participants of
the Princeton Web Privacy and Transparency workshop.

This work was supported by NSF Grant CNS
1526353, a grant from the Data Transparency Lab, and
by Amazon AWS Cloud Credits for Research.

References
[1] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,

NARAYANAN, A., AND DIAZ, C. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proceedings of the
21st ACM Conference on Computer and Communications Secu-
rity (CCS 2014) (2014).

[2] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,
GÜRSES, S., PIESSENS, F., AND PRENEEL, B. FPDetective:
dusting the web for fingerprinters. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM.

[3] ADAMIC, L. A., AND HUBERMAN, B. A. Zipfs law and the
internet. Glottometrics 3, 1 (2002), 143–150.

[4] ALTAWEEL I, GOOD N, H. C. Web privacy census. Technology
Science (2015).

[5] ANGWIN, J. What they know. The Wall Street Journal.
http://online.wsj.com/public/page/what-they-

know-digital-privacy.html, 2012.

[6] AYENSON, M., WAMBACH, D. J., SOLTANI, A., GOOD, N.,
AND HOOFNAGLE, C. J. Flash cookies and privacy II: Now with
HTML5 and ETag respawning. World Wide Web Internet And
Web Information Systems (2011).

[7] BLACK, P. E. Ratcliff/Obershelp pattern recognition. http://
xlinux.nist.gov/dads/HTML/ratcliffObershelp.html,
December 2004.

[8] DATTA, A., TSCHANTZ, M. C., AND DATTA, A. Automated
experiments on ad privacy settings. Proceedings on Privacy En-
hancing Technologies 2015, 1 (2015), 92–112.

17

http://online.wsj.com/public/page/what-they-know-digital-privacy.html
http://online.wsj.com/public/page/what-they-know-digital-privacy.html
http://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
http://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html

[9] DAVIS, W. KISSmetrics Finalizes Supercookies Settlement.
http://www.mediapost.com/publications/article/

191409/kissmetrics-finalizes-supercookies-

settlement.html, 2013. [Online; accessed 12-May-2014].

[10] ECKERSLEY, P. How unique is your web browser? In Privacy
Enhancing Technologies (2010), Springer.

[11] ELECTRONIC FRONTIER FOUNDATION. Encrypting the Web.
https://www.eff.org/encrypt-the-web.

[12] ENGLEHARDT, S., REISMAN, D., EUBANK, C., ZIMMERMAN,
P., MAYER, J., NARAYANAN, A., AND FELTEN, E. W. Cook-
ies that give you away: The surveillance implications of web
tracking. In Proceedings of the 24th International Conference
on World Wide Web (2015), International World Wide Web Con-
ferences Steering Committee, pp. 289–299.

[13] FEDERAL TRADE COMMISSION. Google will pay $22.5
million to settle FTC charges it misrepresented privacy
assurances to users of Apple’s Safari internet browser.
https://www.ftc.gov/news-events/press-releases/

2012/08/google-will-pay-225-million-settle-ftc-

charges-it-misrepresented, 2012.

[14] FIFIELD, D., AND EGELMAN, S. Fingerprinting web users
through font metrics. In Financial Cryptography and Data Se-
curity. Springer, 2015, pp. 107–124.

[15] FRUCHTER, N., MIAO, H., STEVENSON, S., AND BALEBAKO,
R. Variations in tracking in relation to geographic location. In
Proceedings of W2SP (2015).

[16] GILL, P., ERRAMILLI, V., CHAINTREAU, A., KRISHNA-
MURTHY, B., PAPAGIANNAKI, K., AND RODRIGUEZ, P. Follow
the money: understanding economics of online aggregation and
advertising. In Proceedings of the 2013 conference on Internet
measurement conference (2013), ACM, pp. 141–148.

[17] GORMAN, S., AND VALENTINO-DEVRIES, J.
New Details Show Broader NSA Surveillance
Reach. http://online.wsj.com/news/articles/

SB10001424127887324108204579022874091732470,
2013.

[18] HANNAK, A., SOELLER, G., LAZER, D., MISLOVE, A., AND
WILSON, C. Measuring price discrimination and steering on e-
commerce web sites. In Proceedings of the 14th Internet Mea-
surement Conference (IMC 2014) (2014).

[19] HOOFNAGLE, C. J., AND GOOD, N. Web privacy census. Avail-
able at SSRN 2460547 (2012).

[20] KRANCH, M., AND BONNEAU, J. Upgrading HTTPS in midair:
HSTS and key pinning in practice. In NDSS ’15: The 2015
Network and Distributed System Security Symposium (February
2015).

[21] KRASHAKOV, S. A., TESLYUK, A. B., AND SHCHUR, L. N.
On the universality of rank distributions of website popularity.
Computer Networks 50, 11 (2006), 1769–1780.

[22] KRISHNAMURTHY, B., NARYSHKIN, K., AND WILLS, C. Pri-
vacy leakage vs. protection measures: the growing disconnect. In
Proceedings of the Web (2011), vol. 2.

[23] KRISHNAMURTHY, B., AND WILLS, C. Privacy diffusion on
the web: a longitudinal perspective. In Proceedings of the 18th
international conference on World wide web (2009), ACM.

[24] KRISHNAMURTHY, B., AND WILLS, C. E. On the leakage of
personally identifiable information via online social networks. In
Proceedings of the 2nd ACM workshop on Online social networks
(2009), ACM.

[25] LAPERDRIX, P., RUDAMETKIN, W., AND BAUDRY, B. Beauty
and the beast: Diverting modern web browsers to build unique
browser fingerprints. In 37th IEEE Symposium on Security and
Privacy (S&P 2016) (2016).

[26] LÉCUYER, M., DUCOFFE, G., LAN, F., PAPANCEA, A., PET-
SIOS, T., SPAHN, R., CHAINTREAU, A., AND GEAMBASU, R.
Xray: Enhancing the webs transparency with differential correla-
tion. In USENIX Security Symposium (2014).

[27] LECUYER, M., SPAHN, R., SPILIOPOLOUS, Y., CHAINTREAU,
A., GEAMBASU, R., AND HSU, D. Sunlight: Fine-grained
targeting detection at scale with statistical confidence. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 554–566.

[28] LEYDEN, J. Sites pulling sneaky flash cookie-snoop. http://

www.theregister.co.uk/2009/08/19/flash_cookies/,
2009.

[29] LIBERT, T. Exposing the invisible web: An analysis of third-
party http requests on 1 million websites. International Journal
of Communication 9, 0 (2015).

[30] MARSHALL, J. Burst of M&A in Online Advertising as Shakeout
Begins. http://blogs.wsj.com/cmo/2015/01/07/burst-

of-ma-in-online-advertising-as-shakeout-begins/,
2015.

[31] MATTIOLI, D. On Orbitz, Mac users steered to pricier
hotels. http://online.wsj.com/news/articles/

SB10001424052702304458604577488822667325882,
2012.

[32] MAYER, J. R., AND MITCHELL, J. C. Third-party web tracking:
Policy and technology. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE.

[33] MCDONALD, A. M., AND CRANOR, L. F. Survey of the use of
Adobe Flash Local Shared Objects to respawn HTTP cookies, a.
ISJLP 7 (2011).

[34] MIKIANS, J., GYARMATI, L., ERRAMILLI, V., AND
LAOUTARIS, N. Detecting price and search discrimination on
the internet. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks (2012), ACM.

[35] MOHAMED, N. You deleted your cookies? think
again. http://www.wired.com/2009/08/you-deleted-

your-cookies-think-again/, 2009.

[36] MOWERY, K., AND SHACHAM, H. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP (2012).

[37] MOZILLA DEVELOPER NETWORK. Mixed content - Se-
curity. https://developer.mozilla.org/en-US/docs/

Security/Mixed_content.

[38] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You are what you include: Large-scale eval-
uation of remote javascript inclusions. In Proceedings of the
2012 ACM conference on Computer and communications secu-
rity (2012), ACM, pp. 736–747.

18

http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
http://www.mediapost.com/publications/article/191409/kissmetrics-finalizes-supercookies-settlement.html
https://www.eff.org/encrypt-the-web
https://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges-it-misrepresented
https://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges-it-misrepresented
https://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges-it-misrepresented
http://online.wsj.com/news/articles/SB10001424127887324108204579022874091732470
http://online.wsj.com/news/articles/SB10001424127887324108204579022874091732470
http://www.theregister.co.uk/2009/08/19/flash_cookies/
http://www.theregister.co.uk/2009/08/19/flash_cookies/
http://blogs.wsj.com/cmo/2015/01/07/burst-of-ma-in-online-advertising-as-shakeout-begins/
http://blogs.wsj.com/cmo/2015/01/07/burst-of-ma-in-online-advertising-as-shakeout-begins/
http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
http://www.wired.com/2009/08/you-deleted-your-cookies-think-again/
http://www.wired.com/2009/08/you-deleted-your-cookies-think-again/
https://developer.mozilla.org/en-US/docs/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Security/Mixed_content

[39] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL,
C., PIESSENS, F., AND VIGNA, G. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting. In Security
and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE.

[40] OCARIZA, F., PATTABIRAMAN, K., AND ZORN, B. Javascript
errors in the wild: An empirical study. In Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International Symposium
on (2011), IEEE, pp. 100–109.

[41] OLEJNIK, L., ACAR, G., CASTELLUCCIA, C., AND DIAZ, C.
The leaking battery. Cryptology ePrint Archive Report 2015/616
(2015).

[42] OLEJNIK, L., CASTELLUCCIA, C., ET AL. Selling off privacy at
auction. In NDSS ’14: The 2014 Network and Distributed System
Security Symposium (2014).

[43] PHANTOM JS. Supported web standards. http://www.

webcitation.org/6hI3iptm5, 2016.

[44] RAFIQUE, M. Z., VAN GOETHEM, T., JOOSEN, W., HUYGENS,
C., AND NIKIFORAKIS, N. Its free for a reason: Exploring the
ecosystem of free live streaming services. In NDSS ’16: The 2016
Network and Distributed System Security Symposium (2016).

[45] ROBINSON, N., AND BONNEAU, J. Cognitive disconnect: Un-
derstanding Facebook Connect login permissions. In Proceedings
of the second edition of the ACM conference on Online social net-
works (2014), ACM, pp. 247–258.

[46] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting
and defending against third-party tracking on the web. In 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (2012).

[47] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting
and Defending Against Third-Party Tracking on the Web. In
Symposium on Networking Systems Design and Implementation
(2012), USENIX.

[48] SELENIUM BROWSER AUTOMATION. Selenium faq.
https://code.google.com/p/selenium/wiki/

FrequentlyAskedQuestions, 2014.

[49] SINGEL, R. Online Tracking Firm Settles Suit Over
Undeletable Cookies. http://www.wired.com/2010/12/

zombie-cookie-settlement/, 2010.

[50] SOLTANI, A., CANTY, S., MAYO, Q., THOMAS, L., AND
HOOFNAGLE, C. J. Flash cookies and privacy. In AAAI
Spring Symposium: Intelligent Information Privacy Management
(2010).

[51] SOLTANI, A., PETERSON, A., AND GELLMAN, B.
NSA uses Google cookies to pinpoint targets for hack-
ing. http://www.washingtonpost.com/blogs/the-

switch/wp/2013/12/10/nsa-uses-google-cookies-to-

pinpoint-targets-for-hacking, December 2013.

[52] STAROV, O., DAHSE, J., AHMAD, S. S., HOLZ, T., AND NIKI-
FORAKIS, N. No honor among thieves: A large-scale analysis of
malicious web shells. In Proceedings of the 25th International
Conference on World Wide Web (2016).

[53] THE GUARDIAN. ‘Tor Stinks’ presentation - read
the full document. http://www.theguardian.com/

world/interactive/2013/oct/04/tor-stinks-nsa-

presentation-document, October 2013.

[54] TOLLMAN, Z. Were Going HTTPS: Heres How WIRED Is
Tackling a Huge Security Upgrade. https://www.wired.com/
2016/04/wired-launching-https-security-upgrade/,
2016.

[55] UBERTI, J., AND WEI SHIEH, G. WebRTC IP Address Handling
Recommendations. https://datatracker.ietf.org/doc/

draft-ietf-rtcweb-ip-handling/.

[56] VAN ACKER, S., NIKIFORAKIS, N., DESMET, L., JOOSEN, W.,
AND PIESSENS, F. Flashover: Automated discovery of cross-site
scripting vulnerabilities in rich internet applications. In Proceed-
ings of the 7th ACM Symposium on Information, Computer and
Communications Security (2012), ACM, pp. 12–13.

[57] VAN GOETHEM, T., PIESSENS, F., JOOSEN, W., AND NIKI-
FORAKIS, N. Clubbing seals: Exploring the ecosystem of third-
party security seals. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (2014),
ACM, pp. 918–929.

[58] VISSERS, T., NIKIFORAKIS, N., BIELOVA, N., AND JOOSEN,
W. Crying wolf? on the price discrimination of online airline
tickets. HotPETS, 2014.

[59] WAZER, W. V. Moving the Washington Post to HTTPS. https:
//developer.washingtonpost.com/pb/blog/post/

2015/12/10/moving-the-washington-post-to-https/,
2015.

[60] XING, X., MENG, W., DOOZAN, D., FEAMSTER, N., LEE,
W., AND SNOEREN, A. C. Exposing inconsistent web search
results with bobble. In Passive and Active Measurement (2014),
Springer, pp. 131–140.

[61] YUE, C., AND WANG, H. A measurement study of insecure
javascript practices on the web. ACM Transactions on the Web
(TWEB) 7, 2 (2013), 7.

[62] ZARRAS, A., KAPRAVELOS, A., STRINGHINI, G., HOLZ, T.,
KRUEGEL, C., AND VIGNA, G. The dark alleys of madison
avenue: Understanding malicious advertisements. In Proceed-
ings of the 2014 Conference on Internet Measurement Conference
(2014), ACM, pp. 373–380.

Appendices

A HTTPS Mixed Content Classification

To classify URLs in the HTTPS mixed content analysis,
we used the block lists described in Section 4. Addition-
ally, we include a list of CDNs from the WebPagetest
Project16. The mixed content URL is then classfied
according to the first rule it satisfies in the following list:
1. If the requested domain matches the landing page do-

main, and the request URL ends with favicon.ico

classify as a “favicon”.
2. If the requested domain matches the landing page

domain, classify as the site’s “own content”.
3. If the requested domain is marked as “should block”

by the blocklists, classify as “tracker”.

16https://github.com/WPO-Foundation/webpagetest

19

http://www.webcitation.org/6hI3iptm5
http://www.webcitation.org/6hI3iptm5
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions
http://www.wired.com/2010/12/zombie-cookie-settlement/
http://www.wired.com/2010/12/zombie-cookie-settlement/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
https://www.wired.com/2016/04/wired-launching-https-security-upgrade/
https://www.wired.com/2016/04/wired-launching-https-security-upgrade/
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://developer.washingtonpost.com/pb/blog/post/2015/12/10/moving-the-washington-post-to-https/
https://github.com/WPO-Foundation/webpagetest

Figure 11: Sample canvas fingerprinting images. These three images
represent the final canvas images created by fingerprinting scripts,
which are subsequently hashed and used to identify the device.

4. If the requested domain is in the CDN list, classify as
“CDN”.

5. Otherwise, classify as “non-tracking” third-party
content.

B WebRTC ICE Candidate Generation

It is possible for a Javascript web application to access
ICE candidates, and thus access a user’s local IP
addresses and public IP address, without explicit user
permission. Although a web application must request
explicit user permission to access audio or video through
WebRTC, the framework allows a web application to
construct an RTCDataChannel without permission. By
default, the data channel will launch the ICE protocol
and thus enable the web application to access the IP ad-
dress information without any explicit user permission.
Both users behind a NAT and users behind a VPN/proxy
can have additional identifying information exposed to
websites without their knowledge or consent.

Several steps must be taken to have the browser
generate ICE candidates. First, a RTCDataChannel

must be created as discussed above. Next, the
RTCPeerConnection.createOffer() must
be called, which generates a Promise that
will contain the session description once the
offer has been created. This is passed to

Content-Type Count
binary/octet-stream 8
image/jpeg 12664
image/svg+xml 177
image/x-icon 150
image/png 7697
image/vnd.microsoft.icon 41
text/xml 1
audio/wav 1
application/json 8
application/pdf 1
application/x-www-form-urlencoded 8
application/unknown 5
audio/ogg 4
image/gif 2905
video/webm 20
application/xml 30
image/bmp 2
audio/mpeg 1
application/x-javascript 1
application/octet-stream 225
image/webp 1
text/plain 91
text/javascript 3
text/html 7225
video/ogg 1
image/* 23
video/mp4 19
image/pjpeg 2
image/small 1
image/x-png 2

Table 10: Counts of responses with given Content-Type which cause
mixed content errors. NOTE: Mixed content blocking occurs based
on the tag of the initial request (e.g. image src tags are considered
passive content), not the response Content-Type. Thus it is likely that
the Javascript and other active content loads listed above are the result
of misconfigurations and mistakes that will be dropped by the browser.
For example, requesting a Javascript file with an image tag.

RTCPeerConnection.setLocalDescription(),
which triggers the gathering of candidate addresses. The
prepared offer will contain the supported configurations
for the session, part of which includes the IP addresses
gathered by the ICE Agent.17 A web application can
retrieve these candidate IP addresses by using the event
handler RTCPeerConnection.onicecandidate()

and retrieving the candidate IP address from
the RTCPeerConnectionIceEvent.candidate

or, by parsing the resulting Session De-
scription Protocol (SDP)18 string from

17https://w3c.github.io/webrtc-pc/#widl-

RTCPeerConnection-createOffer-Promise-

RTCSessionDescription--RTCOfferOptions-options
18https://tools.ietf.org/html/rfc3264

20

https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://w3c.github.io/webrtc-pc/##widl-RTCPeerConnection-createOffer-Promise-RTCSessionDescription--RTCOfferOptions-options
https://tools.ietf.org/html/rfc3264

RTCPeerConnection.localDescription af-
ter the offer generation is complete. In our
study we only found it necessary to instrument
RTCPeerConnection.onicecandidate() to capture
all current scripts.

C Additional methodological details

All measurements are run with Firefox version 41. The
Ghostery measurements use version 5.4.10 set to block
all possible bugs and cookies. The HTTPS Everywhere
measurement uses version 5.1.0 with the default settings.
The Block TP Cookies measurement sets the Firefox
setting to “block all third-party cookies”

C.1 Classifying Third-party content
In order to determine if a request is a first-party or
third-party request, we utilize the URL’s “public suffix
+ 1” (or PS+1). A public suffix is “is one under
which Internet users can (or historically could) directly
register names. [Examples include] .com, .co.uk and
pvt.k12.ma.us.” A PS+1 is the public suffix with the
section of the domain immediately proceeding it (not
including any additional subdomains). We use Mozilla’s
Public Suffix List19 in our analysis. We consider a site
to be a potential third-party if the PS+1 of the site does
not match the landing page’s PS+1 (as determined by
the algorithm in Appendix C.2). Throughout the paper
we use the word “domain” to refer to a site’s PS+1.

C.2 Detection of landing pages from HTTP
data

Upon visiting a site, the browser may either be redi-
rected by a response header (with a 3XX HTTP response
code or “Refresh” field), or by the page content (with
javascript or a “Refresh” meta tag). Several redirects
may occur before the site arrives at its final landing
page and begins to load the remainder of the content.
To capture all possible redirects we use the following
recursive algorithm, starting with the initial request to
the top-level site. For each request:
1. If HTTP redirect, following it preserving referrer

details from previous request.
2. If the previous referrer is the same as the current

we assume content has started to load and return the
current referrer as the landing page.

3. If the current referrer is different from the previous
referrer, and the previous referrer is seen in future
requests, assume it is the actual landing page and
return the previous referrer.

19https://publicsuffix.org/

4. Otherwise, continue to the next request, updating the
current and previous referrer.
This algorithm has two failure states: (1) a site redi-

rects, loads additional resources, then redirects again, or
(2) the site has no additional requests with referrers. The
first failure mode will not be detected, but the second
will be. From manual inspection, the first failure mode
happens very infrequently. For example, we find that
only 0.05% of sites are incorrectly marked as having
HTTPS as a result of this failure mode. For the second
failure mode, we find that we can’t correctly label the
landing pages of 2973 first-party sites (0.32%) on the
top 1 million sites. For these sites we fall back to the
requested top-level URL.

C.3 Detecting Cookie Syncing
We consider two parties to have cookie synced if a
cookie ID appears in specific locations within the refer-
rer, request, and location URLs extracted from HTTP
request and response pairs. We determine cookie IDs
using the algorithm described in Section 4. To determine
the sender and receiver of a synced ID we use the fol-
lowing classification, in line with previous work [1, 42]:
• If the ID appears in the request URL: the requested

domain is the recipient of a synced ID.
• If the ID appears in the referrer URL: the referring

domain is the sender of the ID, and the requested
domain is the receiver.

• If the ID appears in the location URL: the original
requested domain is the sender of the ID, and the
redirected location domain is the receiver.
This methodology does not require reverse engineer-

ing any domain’s cookie sync API or URL pattern. An
important limitation of this generic approach is the lack
of discrimination between intentional cookie syncing
and accidental ID sharing. The latter can occur if a site
includes a user’s ID within its URL query string, causing
the ID to be shared with all third parties in the referring
URL.

The results of this analysis thus provide an accurate
representation of the privacy implications of ID sharing,
as a third party has the technical capability to use an
unintentionally shared ID for any purpose, including
tracking the user or sharing data. However, the re-
sults should be interpreted only as an upper bound on
cookie syncing as the practice is defined in the online
advertising industry.

C.4 Detection of Fingerprinting
Javascript minification is used to reduce the size of a
file for transit. Additionally, Javascript files can be ob-
fuscated, such that the majority of the script is stored in

21

https://publicsuffix.org/

one or several obfuscated strings which are transformed
and evaluated at run time using various string operations
and the eval function. This makes static analysis
difficult, if not impossible, for these scripts, as the script
can’t be re-constructed without executing the bundled
parser. Anecdotally, we have found that obfuscation is
not uncommon in fingerprinting and tracking scripts,
motivating the use of a dynamic approach. With our
detection methodology, we intercept and record access
to specific Javascript objects, which is not hindered by
minification or obfuscation of the source code.

The methodology builds on that used by Acar, et.al.
[1] to detect canvas fingerprinting. Using the Javascript
calls instrumentation described in Section 3.1, we record
access to specific APIs which have been found to be used
to fingerprint the browser. Each time an instrumented ob-
ject is accessed, we record the full context of the access:
the URL of the calling script, the top-level url of the site,
the property and method being accessed, any provided
arguments, and any properties set or returned. For each
fingerprinting method, we design a detection algorithm
which takes the context as input and returns a binary
classification of whether or not a script uses that method
of fingerprinting when embedded on that first-party site.

When manual verification is necessary, we have two
approaches which depend on the level of script obfusca-
tion. If the script is not obfuscated we manually inspect
the copy which was archived according to the procedure
discussed in Section 3.1. If the script is obfuscated
beyond inspection, we embed a copy of the script in iso-
lation on a dummy HTML page and inspect it using the
Firefox Javascript Deobfuscator20 extension. We also
occasionally spot check live versions of sites and scripts,
falling back to the archive when there are discrepancies.

C.5 Instrumenting JavaScript calls
Our instrumentation of JavaScript calls relies on overrid-
ing of getters and setters for all properties and methods
of each instrumented object. The scripts being measured
run at the same privilege level, so they might erase or
override our instrumentation changes, preventing us
from recording access to the object. Similarly, the script
could first check if a custom getter is present before
executing any fingerprinting code.

However, this would in turn be detectable since we
would observe access to the define{G,S}etter
or lookup{G,S}etter methods for the object
in question and could investigate the cause. In our
1 million site measurement, we only observe script
access to getters or setters for HTMLCanvasElement

and CanvasRenderingContext2D interfaces. All of

20https://addons.mozilla.org/en-US/firefox/addon/

javascript-deobfuscator/

these are benign accesses from 47 scripts total, with the
majority related to an HTML canvas graphics library.

D AudioContext Fingerprinting Configu-
ration

Figure 8 in Section 6.4 summarizes the two audio
fingerprinting configurations found in the wild.

The top configuration, used by a single script
(*.cdn-net.com/cc.js), utilizes AudioContext

to generate a fingerprint. First, the script generates
a triangle wave using an OscillatorNode. This
signal is passed through an AnalyserNode and a
ScriptProcessorNode (omitted from Figure 8).
Finally, the signal is passed into a through a GainNode

with gain set to zero to mute any output before being
connect to the AudioContext’s destination (e.g. the com-
puter’s speakers). The AnalyserNode provides access
to a Fast Fourier Transform (FFT) of the audio signal,
which is captured using the onaudioprocess event
handler added by the ScriptProcessorNode. The
resulting FFT is fed into a hash and used as a fingerprint.

The bottom configuration, used by two scripts
(client.a.pxi.pub/*/main.min.js and
http://js.ad-score.com/score.min.js),
uses a similar technique as the previous script
with two notable differences. The scripts use a
DynamicsCompressorNode, possibly to increase
differences in processed audio between machines.
Rather than access the FFT of a muted stream, it
uses OfflineAudioContext, which outputs the pro-
cessed audio to a buffer available to the script. This
removes the need for an AnalyserNode, GainNode, or
ScriptProcessorNode. The script uses a hash of the
sum of values from the buffer as the fingerprint.

22

https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/
https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/
*.cdn-net.com/cc.js
client.a.pxi.pub/*/main.min.js
http://js.ad-score.com/score.min.js

Fingerprinting Script Count
cdn.doubleverify.com/dvtp_src_internal24.js 4588
cdn.doubleverify.com/dvtp_src_internal23.js 2963
ap.lijit.com/sync 2653
cdn.doubleverify.com/dvbs_src.js 2093
rtbcdn.doubleverify.com/bsredirect5.js 1208
g.alicdn.com/alilog/mlog/aplus_v2.js 894
static.audienceinsights.net/t.js 498
static.boo-box.com/javascripts/embed.js 303
admicro1.vcmedia.vn/core/fipmin.js 180
c.imedia.cz/js/script.js 173
ap.lijit.com/www/delivery/fp 140
www.lijit.com/delivery/fp 127
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js 118
d38nbbai6u794i.cloudfront.net/*/platform.min.js 97
voken.eyereturn.com/ 85
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js 72
static.fraudmetrix.cn/fm.js 71
e.e701.net/cpc/js/common.js 56
tags.bkrtx.com/js/bk-coretag.js 56
dtt617kogtcso.cloudfront.net/sauce.min.js 55
685 others 1853

TOTAL
18283

14371 unique1

Table 11: Canvas fingerprinting scripts on the top Alexa 1 Million sites.
*: Some URLs are truncated for brevity.
1: Some sites include fingerprinting scripts from more than one domain.

Fingerprinting script # of sites Text drawn into the canvas
mathid.mathtag.com/device/id.js

mathid.mathtag.com/d/i.js 2941 mmmmmmmmmmlli
admicro1.vcmedia.vn/core/fipmin.js 243 abcdefghijklmnopqr[snip]
*.online-metrix.net1 75 gMcdefghijklmnopqrstuvwxyz0123456789
pixel.infernotions.com/pixel/ 2 mmmmmmmmmMMMMMMMMM=llllIiiiiii‘’.
api.twisto.cz/v2/proxy/test* 1 mmmmmmmmmmlli
go.lynxbroker.de/eat_session.js 1 mimimimimimimi[snip]

TOTAL
3263

(3250 unique2) -

Table 12: Canvas font fingerprinting scripts on the top Alexa 1 Million sites.
*: Some URLs are truncated for brevity.
1: The majority of these inclusions were as subdomain of the first-party site, where the DNS record points to a subdomain of online-metrix.net.
2: Some sites include fingerprinting scripts from more than one domain.

23

cdn.doubleverify.com/dvtp_src_internal24.js
cdn.doubleverify.com/dvtp_src_internal23.js
ap.lijit.com/sync
cdn.doubleverify.com/dvbs_src.js
rtbcdn.doubleverify.com/bsredirect5.js
g.alicdn.com/alilog/mlog/aplus_v2.js
static.audienceinsights.net/t.js
static.boo-box.com/javascripts/embed.js
admicro1.vcmedia.vn/core/fipmin.js
c.imedia.cz/js/script.js
ap.lijit.com/www/delivery/fp
www.lijit.com/delivery/fp
s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js
d38nbbai6u794i.cloudfront.net/*/platform.min.js
voken.eyereturn.com/
p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js
static.fraudmetrix.cn/fm.js
e.e701.net/cpc/js/common.js
tags.bkrtx.com/js/bk-coretag.js
dtt617kogtcso.cloudfront.net/sauce.min.js
mathid.mathtag.com/device/id.js
mathid.mathtag.com/d/i.js
admicro1.vcmedia.vn/core/fipmin.js
*.online-metrix.net
pixel.infernotions.com/pixel/
api.twisto.cz/v2/proxy/test*
go.lynxbroker.de/eat_session.js
online-metrix.net

Fingerprinting Script First-party Count Classification
cdn.augur.io/augur.min.js 147 Tracking
click.sabavision.com/*/jsEngine.js 115 Tracking
static.fraudmetrix.cn/fm.js 72 Tracking
*.hwcdn.net/fp/Scripts/PixelBundle.js 72 Tracking
www.cdn-net.com/cc.js 45 Tracking
scripts.poll-maker.com/3012/scpolls.js 45 Tracking
static-hw.xvideos.com/vote/displayFlash.js 31 Non-Tracking
g.alicdn.com/security/umscript/3.0.11/um.js 27 Tracking
load.instinctiveads.com/s/js/afp.js 16 Tracking
cdn4.forter.com/script.js 15 Tracking
socauth.privatbank.ua/cp/handler.html 14 Tracking
retailautomata.com/ralib/magento/raa.js 6 Unknown
live.activeconversion.com/ac.js 6 Tracking
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js 3 Tracking
cdn.geocomply.com/101/gc-html5.js 3 Tracking
retailautomata.com/ralib/shopifynew/raa.js 2 Unknown
2nyan.org/animal/ 2 Unknown
pixel.infernotions.com/pixel/ 2 Tracking
167.88.10.122/ralib/magento/raa.js 2 Unknown
80 others present on a single first-party 80 -
TOTAL 705 -

Table 13: WebRTC Local IP discovery on the Top Alexa 1 Million sites.
*: Some URLs are truncated for brevity.

Site Prominence # of FP Rank Change
doubleclick.net 6.72 447,963 +2
google-analytics.com 6.20 609,640 −1
gstatic.com 5.70 461,215 −1
google.com 5.57 397,246 0
facebook.com 4.20 309,159 +1
googlesyndication.com 3.27 176,604 +3
facebook.net 3.02 233,435 0
googleadservices.com 2.76 133,391 +4
fonts.googleapis.com 2.68 370,385 −4
scorecardresearch.com 2.37 59,723 +13
adnxs.com 2.37 94,281 +2
twitter.com 2.11 143,095 −1
fbcdn.net 2.00 172,234 −3
ajax.googleapis.com 1.84 210,354 −6
yahoo.com 1.83 71,725 +5
rubiconproject.com 1.63 45,333 +17
openx.net 1.60 59,613 +7
googletagservices.com 1.52 39,673 +24
mathtag.com 1.45 81,118 −3
advertising.com 1.45 49,080 +9

Table 14: Top 20 third-parties on the Alexa top 1 million, sorted by prominence. The number of first-party sites each third-party is
embedded on is included. Rank change denotes the change in rank between third-parties ordered by first-party count and third-parties
ordered by prominence.

24

cdn.augur.io/augur.min.js
click.sabavision.com/*/jsEngine.js
static.fraudmetrix.cn/fm.js
*.hwcdn.net/fp/Scripts/PixelBundle.js
www.cdn-net.com/cc.js
scripts.poll-maker.com/3012/scpolls.js
static-hw.xvideos.com/vote/displayFlash.js
g.alicdn.com/security/umscript/3.0.11/um.js
load.instinctiveads.com/s/js/afp.js
cdn4.forter.com/script.js
socauth.privatbank.ua/cp/handler.html
retailautomata.com/ralib/magento/raa.js
live.activeconversion.com/ac.js
olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js
cdn.geocomply.com/101/gc-html5.js
retailautomata.com/ralib/shopifynew/raa.js
2nyan.org/animal/
pixel.infernotions.com/pixel/
167.88.10.122/ralib/magento/raa.js
doubleclick.net
google-analytics.com
gstatic.com
google.com
facebook.com
googlesyndication.com
facebook.net
googleadservices.com
fonts.googleapis.com
scorecardresearch.com
adnxs.com
twitter.com
fbcdn.net
ajax.googleapis.com
yahoo.com
rubiconproject.com
openx.net
googletagservices.com
mathtag.com
advertising.com

	Introduction
	Background and related work
	Measurement Platform
	Design and Implementation
	Evaluation
	Applications

	Methodology
	Results of our 1-million site census
	The long but thin tail of online tracking
	Prominence: a metric to rank third parties
	Third parties impede HTTPS adoption
	News sites have the most trackers
	Does tracking protection work?
	How common is cookie syncing?

	Fingerprinting: a 1-million site view
	Canvas Fingerprinting
	Canvas Font Fingerprinting
	WebRTC-based fingerprinting
	AudioContext Fingerprinting
	Battery API Fingerprinting
	The wild west of fingerprinting scripts

	Conclusion and future work
	Acknowledgements
	HTTPS Mixed Content Classification
	WebRTC ICE Candidate Generation
	Additional methodological details
	Classifying Third-party content
	Detection of landing pages from HTTP data
	Detecting Cookie Syncing
	Detection of Fingerprinting
	Instrumenting JavaScript calls

	AudioContext Fingerprinting Configuration

